This study investigated the role of human epidermal growth factor (EGF) in the angiogenic response of the dental pulp to orthodontic force. The release of angiogenic growth factor EGF in human dental pulp following orthodontic force application was examined using neutralizing antibody anti-human (anti-h) EGF to block its effects. The dental pulps from 10 premolar teeth from 10 patients (equal numbers of males and females aged 11-14 years), treated with a straightwire fixed appliance for 2 weeks and extracted for orthodontic reasons, were divided vertically, and sections from each half-pulp were individually co-cultured with a section of rat aorta in collagen surrounded by growth media. Anti-h EGF was added to the media of the co-cultures from one-half of each pulp from each tooth from each patient; the remaining co-cultures from the other half of each pulp without anti-h EGF were used as the controls. Cultures were examined daily by light microscopy for angiogenic growth and number of microvessels. The addition of anti-h EGF to the growth media in the co-cultures resulted in a significant reduction (P < 0.05, Wilcoxon signed rank test) in pulpal and rat aorta microvessel numbers, compared with the control co-cultures. The results indicate that EGF released following orthodontic force application plays a part in the angiogenic response of the pulp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ejo/cjl059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!