Purpose: Histone acetylation is one of the main mechanisms involved in regulation of gene expression. During carcinogenesis, tumor-suppressor genes can be silenced by aberrant histone deacetylation. This epigenetic modification has become an important target for tumor therapy. The histone deacetylation inhibitor, suberoylanilide hydroxamic acid (SAHA), can induce growth arrest in transformed cells. The aim of this study is to examine the effects of SAHA on gene expression and growth of glioblastoma multiforme (GBM) cells in vitro and in vivo.
Experimental Design: The effect of SAHA on growth of GBM cell lines and explants was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Changes of the cell cycle and relative gene expression were detected by fluorescence-activated cell sorting, real-time reverse transcription-PCR, and Western blotting. After glioma cells were implanted in the brains of mice, the ability of SAHA to decrease tumor growth was studied.
Results: Proliferation of GBM cell lines and explants were inhibited in vitro by SAHA (ED50, 2x10(-6) to 2x10(-5) mol/L, 5 days). SAHA exposure of human U87 and T98G glioma cell lines, DA66 and JM94 GBM explants, as well as a murine GL26 GBM cell line resulted in an increased accumulation of cells in G2-M of the cell cycle. Many proapoptotic, antiproliferative genes increased in their expression (DR5, TNFalpha, p21WAF1, p27KIP1), and many antiapoptotic, progrowth genes decreased in their levels (CDK2, CDK4, cyclin D1, cyclin D2) as measured by real-time reverse transcription-PCR and/or Western blot after these GBM cells were cultured with SAHA (2.5x10(-6) mol/L, 1 day). Chromatin immunoprecipitation assay found that acetylation of histone 3 on the p21(WAF1) promoter was markedly increased by SAHA. In vivo murine experiments suggested that SAHA (10 mg/kg, i.v., or 100 mg/kg, i.p.) could cross the blood-brain barrier as shown by prominent increased levels of acetyl-H3 and acetyl-H4 in the brain tissue. Furthermore, the drug significantly (P<0.05) inhibited the proliferation of the GL26 glioma cells growing in the brains of mice and increased their survival.
Conclusions: Taken together, SAHA can slow the growth of GBM in vitro and intracranially in vivo. SAHA may be a welcome addition for the treatment of this devastating disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-06-1261 | DOI Listing |
Background: Focused ultrasound (FUS)-induced blood-brain barrier opening (BBBO) is a technique for safely, non-invasively, and transiently opening the blood brain barrier in a targeted area of the brain. Pre-clinical and clinical studies have shown that FUS is capable of decreasing amyloid plaque load and stimulating neurogenesis in Alzheimer's Disease (AD) models, in addition to being safe for use in human patients. However, the effect of FUS-BBBO on neurons has not yet been characterized, despite its crucial role in cognition and regulating brain function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFBackground: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Technology, Akure, Ondo, Nigeria.
Background: In recent decades, epidemiological and experimental studies have looked into the role of pesticides, particularly the herbicide paraquat, in the development of Parkinson's disease. Horseradish tree (Moringa oleifera) is an ethnobotanical plant with lots of therapeutic potential, but there is a dearth of information on the bioactive properties of the seed alkaloid extracts.
Method: This study examined the modulatory effects of various concentrations of an alkaloid extract from the seeds of Horseradish Tree (Moringa oleifera) on the survival rate of flies exposed to paraquat, as well as certain biochemical and molecular markers related to Parkinson's disease in the heads of the flies.
Alzheimers Dement
December 2024
Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;, Beijing, China.
Background: Individuals with type 2 diabetes mellitus (T2DM) face an increased risk of dementia. Recent discoveries indicate that SGLT2 inhibitors, a newer class of anti-diabetic medication, exhibit beneficial metabolic effects beyond glucose control, offering a potential avenue for mitigating the risk of Alzheimer's disease (AD). However, limited evidence exists regarding whether the use of SGLT2 inhibitors effectively reduces the risk of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!