Potassium currents are plastic entities that modify electrical activity of the heart in various physiological conditions including chronic thermal stress. We examined the molecular basis of the inward rectifier K+ current (IK1) in rainbow trout acclimated to cold (4 degrees C, CA) and warm (18 degrees C, WA) temperature. Inward rectifier K+ channel (Kir)2.1 and Kir2.2 transcripts were expressed in atrium and ventricle of the trout heart, K(ir)2.1 being the major component in both cardiac chambers. The relative expression of Kir2.2 was, however, higher (P < 0.05) in atrium than ventricle. The density of ventricular IK1 was approximately 25% larger (P < 0.05) in WA than CA trout. Furthermore, the IK1 of the WA trout was 10 times more sensitive to Ba2+ (IC50 0.18 +/- 0.42 microM) than the IK1 of the CA trout (1.17 +/- 0.44 microM) (P < 0.05), and opening kinetics of single Kir2 channels was slower in WA than CA trout (P < 0.05). When expressed in COS-1 cells, the homomeric Kir2.2 channels demonstrated higher Ba2+ sensitivity (2.88 +/- 0.42 microM) than Kir2.1 channels (24.99 +/- 7.40 microM) (P < 0.05). In light of the different Ba2+ sensitivities of rainbow trout (om)Kir2.1 and omKir2.2 channels, it is concluded that warm acclimation increases either number or activity of the omK(ir)2.2 channels in trout ventricular myocytes. The functional changes in I(K1) are independent of omKir2 transcript levels, which remained unaltered by thermal acclimation. Collectively, these findings suggest that thermal acclimation modifies functional properties and subunit composition of the trout Kir2 channels, which may be needed for regulation of cardiac excitability at variable temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00354.2006 | DOI Listing |
Biol Lett
January 2025
Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar 39231, Sweden.
Vertebrate brain function is particularly sensitive to the effects of hypoxia, with even brief periods of oxygen deprivation causing significant brain damage and impaired cognitive abilities. This study is the first to investigate the cognitive consequences of hypoxia in fish, specifically induced by exhaustive exercise and air exposure, conditions commonly encountered during catch-and-release (C&R) practices in recreational fishing. Angling exerts substantial pressure on inland fish populations, underscoring the need for sustainable practices like C&R.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Section IV 1.2 Biocides, German Environment Agency, Dessau-Roßlau 06813, Germany.
Widely used second-generation anticoagulant rodenticides like brodifacoum are classified as persistent, bioaccumulative, and toxic. Widespread exposure of terrestrial and avian non-target species is well-known and recently hepatic anticoagulant rodenticide residues have been detected in wild fish. However, no sufficient data exist to interpret the effects of these findings on fish health.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
January 2025
Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic.
Rainbow trout (Oncorhynchus mykiss) is an important fish species raised in aquaculture, but it is susceptible to stress, infections diseases. The present study aimed to determine the effects of fulvic acid feed addition on the systemic and mucosal protective mechanisms of juvenile rainbow trout and to elucidate the underlying molecular mechanisms of changes in the gut. Rainbow trout (4.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Caspian Sea Ecology Research Center Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization Mazandaran Iran.
Rainbow trout () is a freshwater fish susceptible to chemical and microbial spoilage, limiting its shelf life. This study aimed to enhance and extend the rainbow trout fillets' shelf life stored at 4°C ± 1°C through an immersion treatment using ultrasound-assisted, defatted pine nut ( Wallich) extracts at concentrations of 1% and 2% (w/v), compared to the control group (0% pine nut). Evaluations were conducted at storage intervals of 0, 4, 8, 12, 16, and 20 days.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China. Electronic address:
Microplastics are prevalent in aquatic ecosystems, impacting various forms of aquatic life, including fish. In this study, Rainbow trout (Oncorhynchus mykiss) were exposed to two concentrations of microplastics (0 and 500 μg/L) over a 14-day period, during which a comprehensive analysis was conducted to assess the liver accumulation of microplastics and their effects on oxidative stress, the liver response, and transcriptomics. Our findings indicated that microplastics significantly accumulated in the liver and activated the antioxidant system in fish by enhancing the activity of antioxidant enzymes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!