Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, the multiclass support vector machines (SVMs) with the error correcting output codes (ECOC) were presented for detecting variabilities of the multiclass Doppler ultrasound signals. The ophthalmic arterial (OA) Doppler signals were recorded from healthy subjects, subjects suffering from OA stenosis, subjects suffering from ocular Behcet disease. The internal carotid arterial (ICA) Doppler signals were recorded from healthy subjects, subjects suffering from ICA stenosis, subjects suffering from ICA occlusion. Methods of combining multiple classifiers with diverse features are viewed as a general problem in various application areas of pattern recognition. Because of the importance of making the right decision, better classification procedures for Doppler ultrasound signals are searched. Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the SVMs trained on the extracted features. The research demonstrated that the multiclass SVMs trained on extracted features achieved high accuracy rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2007.01.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!