Nanotechnology and nanotoxicology: a primer for clinicians.

Toxicol Rev

Division of Medical Toxicology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.

Published: April 2007

Nanotechnology is the manipulation of matter in dimensions <100 nm. At this size, matter can take on different chemical and physical properties, giving the products characteristics useful to industry, medicine and technology. Government funding and private investors provide billions of research dollars for the development of new materials and applications. The potential utility of these technologies is such that they are expected be a trillion-dollar industry within the next 10 years. However, the novel properties of nanoengineered materials lead to the potential for different toxicity compared with the bulk material. The field of nanotoxicology is still in its infancy, however, with very limited literature regarding potential health effects. Inhalational toxicity is to be expected, given the known effects of inhaled fine particulate matter. However, the degree to which most nanoparticles will aerosolise remains to be determined. It has been proposed that dermal exposure will be the most relevant route of exposure, but there is considerably less literature regarding dermal effects and absorption. Less defined still are the potential effects of nanoproducts on fetal development and the environment.

Download full-text PDF

Source
http://dx.doi.org/10.2165/00139709-200625040-00005DOI Listing

Publication Analysis

Top Keywords

nanotechnology nanotoxicology
4
nanotoxicology primer
4
primer clinicians
4
clinicians nanotechnology
4
nanotechnology manipulation
4
manipulation matter
4
matter dimensions
4
nanotechnology
2
primer
1
clinicians
1

Similar Publications

Nose-to-Brain Delivery of Biomimetic Nanoparticles for Glioblastoma Targeted Therapy.

ACS Appl Mater Interfaces

December 2024

Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil.

Glioblastoma (GBM) is an extremely aggressive form of brain cancer that remains challenging to treat, especially owing to the lack of effective targeting and drug delivery concerns. Due to its anatomical advantages, the nose-to-brain strategy is an interesting route for drug delivery. Nanoengineering has provided technological tools and innovative strategies to overcome biotechnological limitations, which is promising for improving the effectiveness of conventional therapies.

View Article and Find Full Text PDF

Chitosan (CS) is a promising polymeric biomaterial for use in scaffolds forskin models and wound dressings, owing to its non-antigenic and antimicrobial properties. However, CS often exhibits insufficient physicochemical properties, mechanical strength, and bioactivity, limiting its efficacy in demanding applications. To address these challenges, cotton cellulose nanofibers (CNFs) represent a promising nanomaterial for enhancing CS-based scaffolds in tissue engineering.

View Article and Find Full Text PDF

Our research group previously studied the effectiveness of lipid-core nanocapsules (LNC) containing simvastatin (SV-LNC) in treating cognitive impairment in rats. While our results were promising, we needed to evaluate the potential toxicity of the nanoparticles themselves. This study aimed to compare the biochemical and hematological parameters of adult Wistar rats receiving LNC or SV-LNC to those receiving low doses of simvastatin crystals dispersed in a saline solution over 45 days.

View Article and Find Full Text PDF

Immunostimulation caused by nanoparticles may be beneficial or adverse depending on their intended application. Activation of immune cells is beneficial for indications targeting the immune system for therapeutic purposes, such as tumor microenvironment reprogramming, immunotherapy, and vaccines. When it is unwanted, however, immunostimulation may lead to excessive inflammation, cytokine storm, and hypersensitivity reactions.

View Article and Find Full Text PDF

The field of nanotechnology has experienced exponential growth, with the unique properties of nanomaterials (NMs) being employed to enhance a wide range of products across diverse industrial sectors. This study examines the toxicity of metal- and carbon-based NMs, with a particular focus on titanium dioxide (TiO), zinc oxide (ZnO), silica (SiO), cerium oxide (CeO), silver (Ag), and multi-walled carbon nanotubes (MWCNTs). The potential health risks associated with increased human exposure to these NMs and their effect on the respiratory, gastrointestinal, dermal, and immune systems were evaluated using in vitro assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!