Tinnitus is defined by an auditory perception in the absence of an external source of sound. This condition provides the distinctive possibility of extracting neural coding of perceptual representation. Previously, we had established that tinnitus is characterized by enhanced magnetic slow-wave activity (approximately 4 Hz) in perisylvian or putatively auditory regions. Because of works linking high-frequency oscillations to conscious sensory perception and positive symptoms in a variety of disorders, we examined gamma band activity during brief periods of marked enhancement of slow-wave activity. These periods were extracted from 5 min of resting spontaneous magnetoencephalography activity in 26 tinnitus and 21 control subjects. Results revealed the following, particularly within a frequency range of 50-60 Hz: (1) Both groups showed significant increases in gamma band activity after onset of slow waves. (2) Gamma is more prominent in tinnitus subjects than in controls. (3) Activity at approximately 55 Hz determines the laterality of the tinnitus perception. Based on present and previous results, we have concluded that cochlear damage, or similar types of deafferentation from peripheral input, triggers reorganization in the central auditory system. This produces permanent alterations in the ongoing oscillatory dynamics at the higher layers of the auditory hierarchical stream. The change results in enhanced slow-wave activity reflecting altered corticothalamic and corticolimbic interplay. Such enhancement facilitates and sustains gamma activity as a neural code of phantom perception, in this case auditory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673575 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3711-06.2007 | DOI Listing |
Front Neurol
January 2025
Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China.
Objective: To observe and measure the morphological and temporal evolutionary features of the hypersynchronous (HYP) pattern in the mesial temporal seizure.
Methods: The HYP patterns during preictal and interictal states of 16 mesial temporal epileptic patients were analyzed. The wave components of the HYP transients were firstly observed and measured.
Prog Neurobiol
January 2025
Department of Biomedicine, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland. Electronic address:
The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.
View Article and Find Full Text PDFClin Neurophysiol
January 2025
Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA.
Objectives: (1) Gain insight into the mechanisms of postoperative delirium (POD). (2) Determine mechanistic overlap with post-ictal delirium (PID). Epilepsy patients undergoing intracranial electrophysiological monitoring can experience both POD and PID, and thus are suitable subjects for these investigations.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:
Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Neurology, University Hospital of Zurich, Zurich, Switzerland.
Introduction: Improving sleep in murine Alzheimer's disease (AD) is associated with reduced brain amyloidosis. However, the window of opportunity for successful sleep-targeted interventions, regarding the reduction in pathological hallmarks and related cognitive performance, remains poorly characterized.
Methods: Here, we enhanced slow-wave activity (SWA) during sleep via sodium oxybate (SO) oral administration for 2 weeks at early (6 months old) or moderately late (11 months old) disease stages in Tg2576 mice and evaluated resulting neuropathology and behavioral performance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!