Culture and differentiation of preadipocytes in two-dimensional and three-dimensional in vitro systems.

Differentiation

Department of Biological Sciences, Immunology and Cell Biology Research Group, The Open University, Walton Hall, Milton Keynes, MK7 6AA U.K.

Published: June 2007

Adipogenesis is a complex process that involves the differentiation of preadipocytes into mature adipocytes. We have developed two-dimensional (2D) and three-dimensional (3D) cell culture systems for the purpose of culturing and differentiating primary preadipocytes in vitro. Differentiating preadipocytes show multiple lipid droplet accumulation and comparable protein expression patterns to mature adipocytes in vivo. We report that in both in vitro systems terminally differentiated adipocytes show characteristics similar to those of mature adipocytes in vivo, assessed by the expression of the S100alpha/beta protein, insulin receptor and caveolin-1, and receptors for inflammatory mediators, namely tumor necrosis factor-alpha receptors I and II (TNFRI and TNFRII) and chemokine receptor 5 (CCR5). Our results demonstrate that the S100 protein, caveolin-1, and insulin receptor are expressed and up-regulated in differentiating and terminally differentiated cells. In addition, the receptors for TNFalpha are not present in preadipocytes but are expressed in differentiating preadipocytes and in differentiated adipocytes. Similarly, CCR5 was exclusively expressed in differentiating preadipocytes and terminally differentiated adipocytes, but not in preadipocytes. Both 2D and 3D culture models are highly robust and reproducible and offer the potential to study adipogenesis and cellular interactions closely resembling and comparable to those in vivo. Our 3D collagen system offers a distinct advantage over the 2D system in that the adipocytes remain confined within the matrix and remain intact during biochemical analysis. Moreover, the collagen matrix allows adipocytes to closely simulate morphological characteristics and behavior as in vivo whilst permitting manipulation of the microenvironment in vitro to study adipogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-0436.2006.00146.xDOI Listing

Publication Analysis

Top Keywords

mature adipocytes
12
differentiating preadipocytes
12
terminally differentiated
12
differentiated adipocytes
12
preadipocytes
8
differentiation preadipocytes
8
two-dimensional three-dimensional
8
vitro systems
8
adipocytes
8
adipocytes vivo
8

Similar Publications

Bisphenol A-Induced Cancer-Associated Adipocytes Promotes Breast Carcinogenesis Via CXCL12/AKT Signaling.

Mol Cell Endocrinol

January 2025

Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.

View Article and Find Full Text PDF

Transcriptomic Signatures of Cold Acclimated Adipocytes Reveal CXCL12 as a Brown Autocrine and Paracrine Chemokine.

Mol Metab

January 2025

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications.

View Article and Find Full Text PDF

Despite being a major target of reconstructive surgery, development of the ear pinna remains poorly studied. Here we provide a cellular characterization of late gestational and postnatal ear pinna development in two rodents and investigate the role of BMP5 in expansion and differentiation of auricular elastic cartilage. We find that ear pinna development is largely conserved between Mus musculus and the highly regenerative Acomys dimidiatus.

View Article and Find Full Text PDF

The obesogenic effects of Bisphenol A and its analogues are differentially regulated via PPARγ transactivation in mouse 3T3-L1 cells.

Toxicol In Vitro

January 2025

Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada. Electronic address:

Exposure to environmental pollutants with obesogenic activity is being recognised as one of the contributing factors to the obesity epidemic. Bisphenol A (BPA) has been shown to stimulate adipogenesis in both human and mouse preadipocytes, to increase body weight and affect lipid metabolism in animal and epidemiological studies. Regulatory action and public concern has prompted industry to replace BPA with other structurally similar analogues that may have similar effects.

View Article and Find Full Text PDF

GRK5 is required for adipocyte differentiation through ERK activation.

Int J Obes (Lond)

January 2025

Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, 27101, USA.

Previous studies have identified G protein-coupled receptor (GPCR) kinase 5 (GRK5) as a genetic factor contributing to obesity pathogenesis, but the underlying mechanism remains unclear. We demonstrate here that Grk5 mRNA is more abundant in stromal vascular fractions of mouse white adipose tissue, the fraction that contains adipose progenitor cells, or committed preadipocytes, than in adipocyte fractions. Thus, we generated a GRK5 knockout (KO) 3T3-L1 preadipocyte to further investigate the mechanistic role of GRK5 in regulating adipocyte differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!