House-cleaning enzymes protect cells from the adverse effects of noncanonical metabolic chemical compounds. The Escherichia coli nucleotide phosphatase YjjG (B4374, JW4336) functions as a house-cleaning phosphatase in vivo. YjjG protects the cell against noncanonical pyrimidine derivatives such as 5-fluoro-2'-deoxyuridine (5-FdUridine), 5-fluorouridine, 5-fluoroorotic acid (5-FOA), 5-fluorouracil, and 5-aza-2'-deoxycytidine. YjjG prevents the incorporation of potentially mutagenic nucleotides into DNA as shown for 5-bromo-2'-deoxyuridine (BrdU). Its enzymatic activity in vitro towards noncanonical 5-fluoro-2'-deoxyuridine monophosphate (5-FdUMP) is higher than towards canonical thymidine monophosphate (dTMP). The closest homolog in humans, HDHD4, does not show a protective effect against noncanonical nucleotides, excluding an involvement of HDHD4 in resistance against noncanonical nucleotides used for cancer chemotherapy. The substrate spectrum of YjjG suggests that its in vivo substrates are noncanonical pyrimidine derivatives, which might also include oxidized nucleobases such as 5-formyluracil and 5-hydroxyuracil.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2007.00646.xDOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
noncanonical pyrimidine
8
pyrimidine derivatives
8
noncanonical nucleotides
8
noncanonical
6
yjjg
5
coli protein
4
protein yjjg
4
yjjg house-cleaning
4
house-cleaning nucleotidase
4

Similar Publications

Carbapenemase producing (CPEs) represent a group of multidrug resistant pathogens for which few, if any, therapeutics options remain available. CPEs generally harbor plasmids that encode resistance to last resort carbapenems and many other antibiotics. We previously performed a high throughput screen to identify compounds that can disrupt the maintenance and replication of resistance conferring plasmids through use of a synthetic screening plasmid introduced into K-12 cells.

View Article and Find Full Text PDF

ArgR regulates motility and virulence through positive control of flagellar genes and inhibition of diguanylate cyclase expression in Aeromonas veronii.

Commun Biol

December 2024

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

Flagella are essential for biofilm formation, adhesion, virulence, and motility. In this study, the deletion of argR resulted in defects in flagellar synthesis and reduced motility, nevertheless, the underlying mechanism by which ArgR regulated bacterial motility remained unclear. ChIP-Seq and RNA-Seq analysis revealed that ArgR regulated the expression of flagellar genes, concluding two-component system flrBC and multitudinous flagellar structure genes.

View Article and Find Full Text PDF

CTX-M, SHV, TEM and VEB β-lactamases, and MCR-1 among multidrug-resistant Escherichia coli and Klebsiella isolates from environment near animal farms in Thailand.

J Infect Public Health

December 2024

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:

Background: Currently, antimicrobial agents are widely used in both animals and agriculture, causing the crisis of multidrug-resistant (MDR) bacteria. In this study we surveyed for 4 important antimicrobial-resistant bacteria: extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, Klebsiella pneumoniae and Salmonella spp., and methicillin-resistant Staphylococcus aureus (MRSA) from the environment around chicken and pig farms.

View Article and Find Full Text PDF

Novel methyldithiocarbazate derivatives as NDM-1 inhibitors to combat multidrug-resistant bacterial infection with β-lactams.

Bioorg Chem

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:

Given the ever-evolving landscape of antimicrobial resistance, the emergence of New Delhi metallo-β-lactamase-1 (NDM-1) has introduced a formidable challenge to global public health. In previous research, we identified the Compound Zndm19 as an NDM-1 inhibitor and reported Zndm19 derivatives, which exhibited moderate antibacterial activity when combined with meropenem (MEM). This moderate activity may have been due to the inability of Zndm19 to efficiently penetrate the bacterial outer membrane or its susceptibility to hydrolysis, which prevented it from exerting strong enzyme inhibition in synergy with bacterial cells.

View Article and Find Full Text PDF

Bacterial resistance is a major public health challenge. In Gram-negative bacteria, the synergy between multidrug efflux pumps and outer membrane impermeability determines the intracellular concentration of antibiotics. Consequently, it also dictates antibiotic activity on their respective targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!