A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The F1-ATPase inhibitor Inh1 (IF1) affects suppression of mtDNA loss-lethality in Kluyveromyces lactis. | LitMetric

The F1-ATPase inhibitor Inh1 (IF1) affects suppression of mtDNA loss-lethality in Kluyveromyces lactis.

FEMS Yeast Res

Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, Canberra, Australia.

Published: August 2007

Loss of mtDNA by the petite-negative yeast Kluyveromyces lactis is lethal (rho(o)-lethality). However, mutations in the alpha, beta and gamma subunits of F(1)-ATPase can suppress lethality by increasing intramitochondrial hydrolysis of ATP. Increased hydrolysis of ATP can also occur on inactivation of Inh1, the natural inhibitor of F(1)-ATPase. However, not all strains of K. lactis show suppression of rho(o)-lethality on inactivation of INH1. Genetic analysis indicates that one or more alleles of modifying factors are required for suppression. Papillae showing enhanced resistance to ethidium bromide (EB) in INH1 disruptants have mutations in the alpha, beta and gamma subunits of F(1)-ATPase. Increased growth of double mutants on EB has been investigated by disruption of INH1 in previously characterized atp suppressor mutants. Inactivation of Inh1, with one exception, results in better growth on EB and increased F(1)-ATPase activity, indicating that suppression of rho(o)-lethality is not due to atp mutations preventing Inh1 from interacting with the F(1)-complex. By contrast, in suppressor mutants altered in Arg435 of the beta subunit, disruption of INH1 did not change the kinetic properties of F(1)-ATPase or alter growth on EB. Consequently, Arg435 appears to be required for interaction of Inh1 with the beta subunit. In a previous study, a mex1-1 allele was found to enhance mgi(atp) expression. In accord with results from double mutants, it has been found that mex1-1 is a frameshift mutation in INH1 causing inactivation of Inh1p.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1567-1364.2006.00201.xDOI Listing

Publication Analysis

Top Keywords

inactivation inh1
12
inh1
10
kluyveromyces lactis
8
mutations alpha
8
alpha beta
8
beta gamma
8
gamma subunits
8
subunits f1-atpase
8
hydrolysis atp
8
suppression rhoo-lethality
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!