The ortho-benzyne diradical, o-C(6)H(4) has been produced with a supersonic nozzle and its subsequent thermal decomposition has been studied. As the temperature of the nozzle is increased, the benzyne molecule fragments: o-C(6)H(4)+Delta--> products. The thermal dissociation products were identified by three experimental methods: (i) time-of-flight photoionization mass spectrometry, (ii) matrix-isolation Fourier transform infrared absorption spectroscopy, and (iii) chemical ionization mass spectrometry. At the threshold dissociation temperature, o-benzyne cleanly decomposes into acetylene and diacetylene via an apparent retro-Diels-Alder process: o-C(6)H(4)+Delta-->HC triple bond CH+HC triple bond C-C triple bond CH. The experimental Delta(rxn)H(298)(o-C(6)H(4)-->HC triple bond CH+HC triple bond C-C triple bond CH) is found to be 57+/-3 kcal mol(-1). Further experiments with the substituted benzyne, 3,6-(CH(3))(2)-o-C(6)H(2), are consistent with a retro-Diels-Alder fragmentation. But at higher nozzle temperatures, the cracking pattern becomes more complicated. To interpret these experiments, the retro-Diels-Alder fragmentation of o-benzyne has been investigated by rigorous ab initio electronic structure computations. These calculations used basis sets as large as [C(7s6p5d4f3g2h1i)H(6s5p4d3f2g1h)] (cc-pV6Z) and electron correlation treatments as extensive as full coupled cluster through triple excitations (CCSDT), in cases with a perturbative term for connected quadruples [CCSDT(Q)]. Focal point extrapolations of the computational data yield a 0 K barrier for the concerted, C(2v)-symmetric decomposition of o-benzyne, E(b)(o-C(6)H(4)-->HC triple bond CH+HC triple bond C-C triple bond CH)=88.0+/-0.5 kcal mol(-1). A barrier of this magnitude is consistent with the experimental results. A careful assessment of the thermochemistry for the high temperature fragmentation of benzene is presented: C(6)H(6)-->H+[C(6)H(5)]-->H+[o-C(6)H(4)]-->HC triple bond CH+HC triple bond C-C triple bond CH. Benzyne may be an important intermediate in the thermal decomposition of many alkylbenzenes (arenes). High engine temperatures above 1500 K may crack these alkylbenzenes to a mixture of alkyl radicals and phenyl radicals. The phenyl radicals will then dissociate first to benzyne and then to acetylene and diacetylene.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2409927DOI Listing

Publication Analysis

Top Keywords

triple bond
48
bond ch+hc
16
ch+hc triple
16
bond c-c
16
c-c triple
16
triple
13
bond
12
thermal decomposition
8
mass spectrometry
8
acetylene diacetylene
8

Similar Publications

Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.

View Article and Find Full Text PDF

Defect-Induced Electron Localization Promotes D2O Dissociation and Nitrile Adsorption for Deuterated Amines.

Angew Chem Int Ed Engl

January 2025

Tianjin University, Department of Chemistry, #92, Weijin Road, Nankai District, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, CHINA.

Electrochemical reductive deuteration of nitriles is a promising strategy for synthesizing deuterated amines with D2O as the deuterated source. However, this reaction suffers from high overpotentials owing to the sluggish D2O dissociation kinetics and high thermodynamic stability of the C≡N triple bond. Here, low-coordinated copper (LC-Cu) is designed to decrease the overpotential for the electrosynthesis of the precursor of Melatonin-d4, 5-methoxytryptamine-d4, by 100 mV with a 68% yield (Faraday efficiency), which is 4 times greater than that of high-coordinated copper (HC-Cu).

View Article and Find Full Text PDF

Composition-dependent MRM transitions and structure-indicative elution segments (CMTSES)-based LC-MS strategy for disaccharide profiling and isomer differentiation.

Anal Chim Acta

February 2025

Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China. Electronic address:

Background: Carbohydrates exhibit diverse functions and extensive biological activities and are notable in the field of life sciences. However, their inherent diversity and complexity-steaming from variations in isomeric monomers, glycosidic bonds, configurations, etc.-present considerable challenges in structural analysis.

View Article and Find Full Text PDF

Benzothiazole-triazole hybrids: Novel anticancer agents inducing cell cycle arrest and apoptosis through Bcl-2 inhibition in triple-negative breast cancer.

Bioorg Chem

January 2025

Department of Chemistry, SRICT-Institute of Science and Research, UPL University of Sustainable Technology, Ankleshwar Valia Road, Vataria 393135, India. Electronic address:

In this study, we aim to detail the design and synthesis of a series of benzothiazole tethered triazole compounds that incorporate acetamide chains, with the purpose of investigating their potential as anticancer agents. The structural integrity of the compounds was confirmed through characterization using H NMR, C NMR, mass spectrometry, and IR spectroscopy. The compounds demonstrated notable cytotoxic effects when tested against a range of cancer cell lines, with a specific inhibition observed in triple-negative breast cancer.

View Article and Find Full Text PDF

This study investigated the effects of Chlamydomonas reinhardtii polysaccharides (CRPs) on retarding the retrogradation of japonica rice starch (JS) and glutinous rice starch (GS). Structure characterization revealed that CRPs, with an average molecular weight of 505 kDa, mainly consisted of glucose, mannose, and galactose and featured a triple-helix structure. CRPs could reduce the storage modulus increment of JS during the cooling process by interacting with amylose, thereby inhibiting gel network formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!