Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum.

J Nat Prod

SW Center for Natural Products Research and Commercialization, Office of Arid Lands Studies, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706-6800, USA.

Published: February 2007

Wound-healing assay-guided fractionation of an EtOAc extract of the fungal strain Fusarium oxysporum EPH2RAA endophytic in Ephedra fasciculata afforded beauvericin (1), (-)-oxysporidinone (2), and two new N-methyl-2-pyridones, (-)-4,6'-anhydrooxysporidinone (3) and (-)-6-deoxyoxysporidinone (4). Beauvericin (1) inhibited migration of the metastatic prostate cancer (PC-3M) and breast cancer (MDA-MB-231) cells and showed antiangiogenic activity in HUVEC-2 cells at sublethal concentrations. Cytotoxicity-guided fractionation of an EtOAc extract of F. oxysporum strain CECIS occurring in Cylindropuntia echinocarpus afforded rhodolamprometrin (5), bikaverin (6), and the new natural product 6-deoxybikaverin (7). All compounds were evaluated for cytotoxicity in a panel of four sentinel cancer cell lines, NCI-H460 (non-small-cell lung), MIA Pa Ca-2 (pancreatic), MCF-7 (breast), and SF-268 (CNS glioma), and only beauvericin (1) and bikaverin (6) were active, with 1 and 6 showing selective toxicity toward NCI-H460 and MIA Pa Ca-2, respectively. Interestingly, 6-deoxybikaverin (7) was completely devoid of activity, suggesting the requirement of the C-6 hydroxy group of bikaverin for its cytotoxic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361905PMC
http://dx.doi.org/10.1021/np060394tDOI Listing

Publication Analysis

Top Keywords

fusarium oxysporum
8
fractionation etoac
8
etoac extract
8
mia ca-2
8
search cell
4
cell motility
4
motility angiogenesis
4
angiogenesis inhibitors
4
inhibitors potential
4
potential anticancer
4

Similar Publications

Isolation, Characterization, and Proteomic Analysis of Crude and Purified Extracellular Vesicles Extracted from f. sp. .

Plants (Basel)

December 2024

Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

Extracellular vesicles (EVs) produced by f. sp. () play vital roles in plant-pathogen interactions; however, the isolation of purified TR4-EVs and their pathogenicity and proteomic profiles are not well studied.

View Article and Find Full Text PDF

Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.

View Article and Find Full Text PDF

Biosynthesis and Characterization of Silver Nanoparticles and Simvastatin Association in Titanium Biofilms.

Pharmaceuticals (Basel)

November 2024

Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil.

Introduction: Simvastatin is an antilipidemic drug that has already demonstrated antibacterial activities on oral and non-oral microorganisms. Silver nanoparticles also exhibit antimicrobial properties, particularly for coating implant surfaces. In this study, we evaluated the effects of combining simvastatin with silver nanoparticles on the formation and viability of biofilms consolidated on titanium discs.

View Article and Find Full Text PDF

Bioassay-Guided Fractionation Networking for Discovery of Biofungicides from Cultivated .

Int J Mol Sci

December 2024

Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.

Considering the detrimental impacts of the current pesticides on the biotic components of the biosphere, the development of novel pesticides is vital. Plant-derived biopesticides have emerged as popular alternatives to create a safer and more sustainable agriculture model. This study aims to validate the previous bioguided fractionation of endemic Canary Islands sage, , as a potential source of botanical pesticides using a cultivation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!