A study was begun in the winter of 2000-2001 and continued through the winter of 2001-2002 to examine air quality at the Green Rock snowmobile staging area at 2,985 m elevation in the Snowy Range of Wyoming. The study was designed to evaluate the effects of winter recreation snowmobile activity on air quality at this high elevation site by measuring levels of nitrogen oxides (NO( x ), NO), carbon monoxide (CO), ozone (O(3)) and particulate matter (PM(10) mass). Snowmobile numbers were higher weekends than weekdays, but numbers were difficult to quantify with an infrared sensor. Nitrogen oxides and carbon monoxide were significantly higher weekends than weekdays. Ozone and particulate matter were not significantly different during the weekend compared to weekdays. Air quality data during the summer was also compared to the winter data. Carbon monoxide levels at the site were significantly higher during the winter than during the summer. Nitrogen oxides and particulates were significantly higher during the summer compared to winter. Nevertheless, air pollutants were well dispersed and diluted by strong winds common at the site, and it appears that snowmobile emissions did not have a significant impact on air quality at this high elevation ecosystem. Pollutant concentrations were generally low both winter and summer. In a separate study, water chemistry and snow density were measured from snow samples collected on and adjacent to a snowmobile trail. Snow on the trail was significantly denser and significantly more acidic with significantly higher concentrations of sodium, ammonium, calcium, magnesium, fluoride, and sulfate than in snow off the trail. Snowmobile activity had no effect on nitrate levels in snow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-006-9587-9 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114.
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medical Sciences, Cancer Epidemiology Unit, University of Turin and CPO-Piemonte, Turin, Italy.
Objectives: Maternal occupational exposures during early pregnancy can be detrimental to foetus health and have short- and long-term health effects on the child. This study examined their association with adverse birth outcomes.
Methods: The study included 3938 nulliparous women from the Italian NINFEA mother-child cohort.
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.
View Article and Find Full Text PDFInt J Biometeorol
January 2025
Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China.
Air pollution remains a significant threat to human health and economic development. Most previous studies have examined the health effects of individual pollutants, which often overlook the combined impacts of multiple pollutants. The traditional composite indicator air quality index (AQI) only focuses on the major pollutants, whereas the health risk-based air quality index (HAQI) could offer a more comprehensive evaluation of the health effects of various pollutants on populations.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
International Joint Research Center For Green Energy and Chemical Industry, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
Escalating SOx and NOx emissions from industrial plants necessitates customized scrubbing solutions to improve removal efficiency and tackle cost limitations in existing wet FGD units. This work investigates the real-time intensified removal pathways via an innovative two-stage countercurrent spray tower configuration strategically integrating NaOH (M) and NaOH/NaClO (M/M) to remove SOx and NOx emissions simultaneously from the industrial stack through a comprehensive parametric study of absorbents concentration, reaction temperature, gas flow rate, liquid to gas ratio (F/F), and absorbent showering head. Flue gas stream comprising SO bearing 4500 ppm, SO bearing 300 ppm, 70 ppm NO, and 50 ppm NO brought into contact with two scrubbing solutions as M, and a complex absorbent of M/M at varying respective ratios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!