[Hairy roots induction of Phellodendron chinense and production of its active constituents].

Zhongguo Zhong Yao Za Zhi

Department of Biological Engineering, Chengdu University, Chengdu 610106, China.

Published: November 2006

Objective: To introduce the hairy roots of Phellodendron chinense and determine the content of its active constituents.

Method: Transformed hairy roots of P. chinense were obtained by the transformation of Agrobacterium rhizogenes A4, R1600, ATCC15834 and R1000.

Result And Conclusion: It was clearly demonstrated that T-DNA of A. rhizogenes Ri plasmid was integrated into the cells of hairy roots by PCR. The content of berberine hydrochlodride, which was determined by HPLC, was higher in hairy roots than that in the axenic plantet and callus.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hairy roots
16
phellodendron chinense
8
[hairy roots
4
roots induction
4
induction phellodendron
4
chinense production
4
production active
4
active constituents]
4
constituents] objective
4
objective introduce
4

Similar Publications

The 26S proteasome is a crucial protease complex responsible for degrading specific proteins to maintain cellular function during salt stress. Previous studies have shown that GmRPN11d, a subunit of the regulatory particle in soybean, is upregulated in response to short-term salt stress. This research discovered that GmRPN11d is localized in the nucleus and cytoplasm, with its expression increasing under high salinity and other stress conditions.

View Article and Find Full Text PDF

Hairy vetch ( Roth), a leguminous plant with nitrogen-fixing ability, is used as a cover crop and has the potential to suppress weeds and plant diseases. The microbial composition, particularly fungal endophytes, which may be related to the beneficial functions of this crop, has not been previously studied. In this study, we analyzed the diversity and function of culturable fungal endophytes associated with hairy vetch from eight locations across Japan.

View Article and Find Full Text PDF

The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by ' asiaticus' (Las). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to Las infection induction were screened, and one gene cloned with higher differential expression level was selected and named . we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins.

View Article and Find Full Text PDF

Genome-wide analysis of the laccase gene family in Arachis hypogaea and functional characterization of AhLAC63 involved in lignin biosynthesis and abiotic stress.

Int J Biol Macromol

December 2024

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China. Electronic address:

Plant laccases (LACs) play a vital role in lignification and participate in multiple biotic/abiotic stress responses. However, little is known about their role in lignin deposition and stress resistance in cultivated peanut (Arachis hypogaea L.).

View Article and Find Full Text PDF

The analysis of the genetic loci affecting phenotypic plasticity of soybean isoflavone content by dQTG.seq model.

Theor Appl Genet

December 2024

Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.

Article Synopsis
  • The dQTG.seq model helped identify 100 marker sites related to the phenotypic plasticity of soybean isoflavone content, including 27 transcription factors crucial for this trait.
  • Overexpression of the GmERF7 gene under stressful conditions (like low temperature, salt, and drought) confirmed its key role in regulating isoflavone levels in soybeans.
  • The study highlights how environmental factors affect isoflavone content in different soybean varieties, emphasizing the importance of GmERF7 in helping soybeans adapt to stressful environments through increased phenotypic plasticity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!