The discovery of endomorphins (EMs) has opened the possibility of searching for new analgesics. However, the design of peptide analgesics has proven to be very difficult as a result of their conformational flexibility and a lack of clarity in structure-activity relationships (SAR). In EMs, the amino acid side chains exhibit considerable conformational flexibility, especially in the third aromatic ring, which is free to adopt a bioactive conformation. To resolve these problems, a series of C terminus EM analogues, [Xaa(4)-R]EMs, modified through the substitution of Phe(4) with nonaromatic residues and termination with benzyl groups, were designed to generate conformational constrains of the third aromatic ring by amide bond and torsion angles (phi(4) and psi(4)) of Xaa(4). Introduction of (S)-alpha-methyl or (S)/(R)-alpha-carboxamide on the methylene unit of the benzyl group was designed to produce an atypical topographical constraint (phi(5)) of the third aromatic ring rotation. Interestingly, some EM derivatives, with elimination of the C-terminal carboxamide group and significant changes in the address sequence (Phe(4)-NH(2)), still exhibited higher mu-opioid receptor (MOR) affinity than unmodified EMs. In contrast, some analogues with incorrectly constrained C termini displayed very low affinity and pharmacological activities. Thus, our results indicate that these EM analogues, with atypical constrained C termini, provide model compounds with potent MOR agonism. They also give evidence that the proper spatial orientation and conformational restriction of the third aromatic ring are crucial for the interaction of EMs with MOR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.200600274 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Peatlands store one-third of the world's soil organic carbon. Globally increased fires altered peat soil organic matter chemistry, yet the redox property and molecular dynamics of peat-dissolved organic matter (PDOM) during fires remain poorly characterized, limiting our understanding of postfire biogeochemical processes. Clarifying these dynamic changes is essential for effective peatland fire management.
View Article and Find Full Text PDFToxicology
December 2024
Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) have been regarded as important environmental carcinogens that can cause lung cancer. However, the underlying epigenetic mechanism during PAHs-induced lung carcinogenesis has remained largely unknown. Previously, we screened some novel epigenetic regulatory genes during 3-methylcholanthrene (3-MCA)-induced lung carcinogenesis, including the potassium inwardly rectifying channel subfamily J member 15 (KCNJ15) gene.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.
Gigascience
January 2024
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China.
Background: Sandalwood, a prized hemiparasitic plant, is highly sought in the commercial market because of its aromatic core materia. The structure and stability of the genome are instrumental in the rapid adaptation of parasitic plants to their surroundings. However, there is a conspicuous lack of research on the genomic-level adaptive evolution of sandalwood.
View Article and Find Full Text PDFFront Plant Sci
November 2024
College of Life Sciences, South China Agricultural University, Guangzhou, China.
Introduction: (Kom.) Kitag., a member of the Apiaceae family, is a perennial aromatic herb native to Northeast Asia with applications in culinary and traditional medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!