Although quantities derived from solvent accessible surface areas (SASA) are useful in many applications in protein design and structural biology, the computational cost of accurate SASA calculation makes SASA-based scores difficult to integrate into commonly used protein design methodologies. We demonstrate a method for maintaining accurate SASA during a Monte Carlo search of sequence and rotamer space for a fixed protein backbone. We extend the fast Le Grand and Merz algorithm (Le Grand and Merz, J Comput Chem, 14, 349), which discretizes the solvent accessible surface for each atom by placing dots on a sphere and combines Boolean masks to determine which dots are exposed. By replacing semigroup operations with group operations (from Boolean logic to counting dot coverage) we support SASA updates. Our algorithm takes time proportional to the number of atoms affected by rotamer substitution, rather than the number of atoms in the protein. For design simulations with a one hundred residue protein our approach is approximately 145 times faster than performing a Le Grand and Merz SASA calculation from scratch following each rotamer substitution. To demonstrate practical effectiveness, we optimize a SASA-based measure of protein packing in the complete redesign of a large set of proteins and protein-protein interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.20626 | DOI Listing |
Physiol Plant
January 2025
Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, UP, India.
Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:
RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Chemistry, University of California, Davis, CA, United States; Department of Molecular and Cellular Biology, University of California, Davis, CA, United States. Electronic address:
Adenosine deaminases acting on RNAs (ADARs) are a class of RNA editing enzymes found in metazoa that catalyze the hydrolytic deamination of adenosine to inosine in duplexed RNA. Inosine is a nucleotide that can base pair with cytidine, therefore, inosine is interpreted by cellular processes as guanosine. ADARs are functionally important in RNA recoding events, RNA structure modulation, innate immunity, and can be harnessed for therapeutically-driven base editing to treat genetic disorders.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States. Electronic address:
Adenosine Deaminases Acting on RNA (ADARs) convert adenosine to inosine in duplex RNA, and through the delivery of guide RNAs, can be directed to edit specific adenosine sites. As ADARs are endogenously expressed in humans, their editing capacities hold therapeutic potential and allow us to target disease-relevant sequences in RNA through the rationale design of guide RNAs. However, current design principles are not suitable for difficult-to-edit target sites, posing challenges to unlocking the full therapeutic potential of this approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!