Background: Noscapine, a naturally occurring antitussive phthalideisoquinoline alkaloid, is a tubulin-binding agent currently in Phase I/II clinical trials for anticancer therapy. Unlike currently available antimitotics such as taxanes and vincas, noscapine is water-soluble, well tolerated, and shows no detectable toxicity.
Objective: The goal was to develop a simple, sensitive, quantitative, selective, and less time-consuming high-performance liquid chromatography (HPLC) method for determination of noscapine and to study its pharmacokinetics in mice models.
Method: Noscapine was extracted from mice plasma using the protein-precipitation method and detected using a reversed-phase C8 column with mobile phase consisting of 35% acetonitrile and 65% ammonium acetate buffer (pH 4.5) at 232 nm wavelength. Pharmacokinetic studies of noscapine were performed in mice following intravenous bolus at 10 mg/kg and oral administrations at 75, 150, and 300 mg/kg.
Results: The standard curves for noscapine estimation were linear between 390 and 50,000 ng/ml (lower limit of quantification was 390 ng/ml) and the recovery was approximately 80%. Following 10 mg/kg intravenous dose, mean plasma concentrations of 7.88 microg/ml were achieved at 5 min in mice and declined with undetectable levels at 4 h. The mean total body clearance was 4.78 l/h. The mean volume of distribution (V (d)) was 5.05 l. Non-compartmental analysis yielded the mean area under the plasma concentration-time curve (AUC) for noscapine as 53.42, 64.08, and 198.35 h microg/ml reaching maximum plasma concentrations (C (max)) of 12.74, 23.24, and 46.73 microg/ml at a t (max) of 1.12, 1.50, and 0.46 h at the linearly increasing dose levels.
Conclusion: A rapid and simple HPLC/UV method for the quantification of noscapine in plasma has been developed to study pharmacokinetics of noscapine at tumor-suppressive doses in the mouse. Since orally available anticancer drugs are rare, therefore, noscapine, an innocuous agent, having a mean oral bioavailability of 31.5% over the studied dose range merits its further advancement in humans for anticancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-007-0430-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!