The nematode Caenorhabditis elegans was the first organism for which touch insensitive mutants were obtained. The study of the genes defective in these mutants has led to the identification of components of a mechanosensory complex needed for specific cells to sense gentle touch to the body. Multiple approaches using genetics, cell biology, biochemistry, and electrophysiology have characterized a channel complex, containing two DEG/ENaC pore-forming subunits and several other proteins, that transduces the touch response. Other mechanical responses, sensed by other cells using a variety of other components, are less well understood in C. elegans. Many of these other senses may use TRP channels, although DEG/ENaC channels have also been implicated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-006-0187-x | DOI Listing |
Cell Rep
January 2025
Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:
Organisms allocate energetic resources between essential cellular processes to maintain homeostasis and, in turn, maximize fitness. The nutritional regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in Caenorhabditis elegans.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Caenorhabditis elegans proliferates poorly in the presence of abundant Actinobacteria from its natural ecology, but it is unknown why. Here, we show how perturbed levels of hydrogen sulfide modulate the growth rate of both C. elegans and Actinobacteria.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX 78712.
While traditionally studied for their proapoptotic functions in activating the caspase, research suggests BH3-only proteins also have other roles such as mitochondrial dynamics regulation. Here, we find that EGL-1, the BH3-only protein in , promotes the cell-autonomous production of exophers in adult neurons. Exophers are large, micron-scale vesicles that are ejected from the cell and contain cellular components such as mitochondria.
View Article and Find Full Text PDFBiol Open
December 2024
Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren CH-8952, Switzerland.
The gonadal anchor cell (AC) is an essential organizer for the development of the egg-laying organ in the C. elegans hermaphrodite. Recent work has investigated the mechanisms that control the quiescent state the AC adopts while fulfilling its functions.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
The interplay between ribosomal protein (RP) composition and mitochondrial function is essential for energy homeostasis. Balanced RP production optimizes protein synthesis while minimizing energy costs, but its impact on mitochondrial functionality remains unclear. Here, we investigated haploinsufficiency for RP genes (rps-10, rpl-5, rpl-33, and rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!