Hypoxic brain cell injury is a complex process that results from a series of intracellular events. In this work, we tested whether severe hypoxia for 6 h can affect gene expression and protein levels of intracellular calcium channels, ryanodine receptors, and inositol 1,4,5-trisphosphate receptors in mouse cerebellum. In addition, we tested the effect of hypoxia on cerebellar granular cells of rats. We have found that gene expression of types 1 and 2 IP(3) receptors is significantly increased after the exposure of mice to hypoxic stimulus for 6 h and also in rat cerebellar granular cells. Increased gene expression of IP(3) receptors was reflected in increased protein levels of these channels as well. In this process, reactive oxygen species are most probably involved, as antioxidant quercetin abolished hypoxia-induced increase in both types 1 and 2 IP3 receptor. Ryanodine receptors of types 1 and 2 and sarco(endo)plasmic reticulum Ca(2+)-ATPase were not affected by hypoxia on the level of messenger RNA. To test physiological consequences, we measured levels of intracellular calcium. We observed significantly elevated calcium level in hypoxic compared to normoxic cells. Deeper understanding of mechanisms, through which hypoxia regulates intracellular calcium, could point towards the development of new therapeutic approaches to reduce or suppress the pathological effects of cellular hypoxia, such as those seen in stroke or ischemia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-007-0214-6DOI Listing

Publication Analysis

Top Keywords

gene expression
16
ip3 receptors
12
intracellular calcium
12
expression ip3
8
protein levels
8
levels intracellular
8
ryanodine receptors
8
cerebellar granular
8
granular cells
8
types ip3
8

Similar Publications

Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.

View Article and Find Full Text PDF

Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.

View Article and Find Full Text PDF

Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis.

View Article and Find Full Text PDF

In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.

View Article and Find Full Text PDF

Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids.

Adv Biotechnol (Singap)

June 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!