We established a new plant defense response assay using a transient expression system in rice protoplasts. The assay system sensitively detected defense induction by flagellin, which had previously been assigned to a specific elicitor. Our assay system provides a rapid and efficient way to dissect rice defense mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.60526DOI Listing

Publication Analysis

Top Keywords

defense response
8
transient expression
8
expression system
8
system rice
8
rice protoplasts
8
assay system
8
method defense
4
response analysis
4
analysis transient
4
system
4

Similar Publications

Long-term effects of social play on neural and behavioral development remain unclear. We investigated whether just 1 h of juvenile social play could rescue the effects of play deprivation on stress-related behavior and markers of neural plasticity. Syrian hamsters were reared from postnatal days 21-43 in three conditions: peer isolation, peer isolation with daily social play sessions (dyadic play), or group-housed with littermates.

View Article and Find Full Text PDF

A phytocytokine and its derived peptides in the frass of an insect elicit rice defenses.

J Integr Plant Biol

January 2025

State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.

Upon recognizing elicitors derived from herbivores, many plants activate specific defenses. Most of the elicitors identified thus far are from the oral secretions and egg-laying fluids of herbivores; in contrast, herbivore fecal excreta have been sparsely studied in this context. In this study, we identified elicitors in the frass of the striped stem borer (SSB; Chilo suppressalis) larvae using a combination of molecular and chemical analyses, bioactivity tests and insect performance bioassays.

View Article and Find Full Text PDF

The success of introduced species often relies on flexible traits, including immune system traits. While theories predict non-natives will have weak defences due to decreased parasite pressure, effective parasite surveillance remains crucial, as infection risk is rarely zero and the evolutionary novelty of infection is elevated in non-native areas. This study examines the relationship between parasite surveillance and cytokine responsiveness in native and non-native house sparrows, hypothesizing that non-natives maintain high pathogen surveillance while avoiding costly inflammation.

View Article and Find Full Text PDF

Evaluation of the Effect of Virgin Rice Bran Oil (VRBO) on DoxorubicinInduced Cardiotoxicity in Wistar Rats.

Curr Cardiol Rev

January 2025

Department of Nutrition, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France.

Objective: The usage of doxorubicin (DOX), an antineoplastic drug that is frequently used for the cure of cancer, is restricted to maximal doses due to its cardiac toxicity. Reactive oxygen species produced by DOX result in lipid peroxidation and organ failure, ultimately resulting in cardiomyopathy. Due to its high polyphenol content, virgin rice bran oil (VRBO) is a diet nutritional supplement with a strong antioxidant.

View Article and Find Full Text PDF

Background: Tuberculosis is one of the leading causes of death from infectious diseases in the world, with approximately 25% of the global population having latent tuberculosis infection. Secondhand smoke exposure has been recognised as a significant risk factor in the development of active Tuberculosis in individuals with latent tuberculosis infection.

Study Design And Methods: This study used the Systematic Literature Review method based on PRISMA guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!