Characterization of short interspersed elements (SINEs) in a red alga, Porphyra yezoensis.

Biosci Biotechnol Biochem

Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, Japan.

Published: February 2007

Short interspersed element (SINE)-like sequences referred to as PySN1 and PySN2 were identified in a red alga, Porphyra yezoensis. Both elements contained an internal promoter with motifs (A box and B box) recognized by RNA polymerase III, and target site duplications at both ends. Genomic Southern blot analysis revealed that both elements were widely and abundantly distributed on the genome. 3' and 5' RACE suggested that PySN1 was expressed as a chimera transcript with flanking SINE-unrelated sequences and possessed the poly-A tail at the same position near the 3' end of PySN1.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.60565DOI Listing

Publication Analysis

Top Keywords

short interspersed
8
red alga
8
alga porphyra
8
porphyra yezoensis
8
characterization short
4
interspersed elements
4
elements sines
4
sines red
4
yezoensis short
4
interspersed element
4

Similar Publications

Targeting EBV Episome for Anti-Cancer Therapy: Emerging Strategies and Challenges.

Viruses

January 2025

Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA.

As a ubiquitous human pathogen, the Epstein-Barr virus (EBV) has established lifelong persistent infection in about 95% of the adult population. The EBV infection is associated with approximately 200,000 human cancer cases and 140,000 deaths per year. The presence of EBV in tumor cells provides a unique advantage in targeting the viral genome (also known as episome), to develop anti-cancer therapeutics.

View Article and Find Full Text PDF

Gene editing technologies, particularly clustered regularly interspersed short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, have revolutionized the ability to modify gene sequences in living cells for therapeutic purposes. Delivery of CRISPR/Cas ribonucleoprotein (RNP) is preferred over its DNA and RNA formats in terms of gene editing effectiveness and low risk of off-target events. However, the intracellular delivery of RNP poses significant challenges and necessitates the development of non-viral vectors.

View Article and Find Full Text PDF

Objectives: The effects of acute physical exercise in patients with resistant hypertension remain largely unexplored compared with hypertensive patients in general. We assessed the short-term effects of acute moderate-intensity (MICE) and high-intensity interval exercise (HIIE) on the clinic (BP) and 24-h ambulatory blood pressure (ABP) of patients with resistant hypertension.

Methods: Using a crossover randomized controlled design, 10 participants (56 ± 7 years) with resistant hypertension performed three experimental sessions: MICE, HIIE, and control.

View Article and Find Full Text PDF

Occlusal tactile acuity (OTA) and bite force are essential components of the sensorimotor control of oral behaviors. While these variables have been studied independently, it has not yet been revealed whether compressive force impacts the occlusal perception mediated by the mechanoreceptive afferents in the periodontal ligament. The present study examined the effect of repetition and maximum bite force on OTA by testing nine aluminum foils of different thicknesses together with a sham test with no foil, three times each, in randomized order in 36 healthy individuals.

View Article and Find Full Text PDF

Purpose: Competitive cheerleading (cheersport) is a physically demanding sport; however, there is a lack of information regarding its acute physiological responses during training or competition in these athletes. Thus, this study aimed to investigate these responses during both training sessions and simulated cheerleading competition routines (full-outs) among elite cheersport athletes.

Methods: Six Coed and 10 All Girl elite cheerleaders were included in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!