Considering the high incidence of galactofuranose (Gal(f)) in pathogens and its absence from higher eukaryotes, the enzymes involved in the biosynthesis of this unusual monosaccharide appear as attractive drug targets. However, although the importance of Gal(f) in bacterial survival or pathogenesis is established, its role in eukaryotic pathogens is still undefined. Recently, we reported the identification and characterization of the first eukaryotic UDP-galactopyranose mutases. This enzyme holds a central role in Gal(f) metabolism by providing UDP-Gal(f) to all galactofuranosyltransferases. In this work, the therapeutical potential of Gal(f) metabolism in Leishmania major was hence evaluated by targeted replacement of the GLF gene encoding UDP-galactopyranose mutase. In L. major, Gal(f) is present in the membrane anchor of the lipophosphoglycan (LPG) and in glycoinositolphospholipids. Accordingly, the generated glf(-) mutant is deficient in LPG backbone and expresses truncated glycoinositolphospholipids. These structural changes do not influence the in vitro growth of the parasite but lead to an attenuation of virulence comparable with that observed with a mutant exclusively deficient in LPG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M700023200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!