Degrade naphthalene using cells immobilized combining with low-intensity ultrasonic technique.

Colloids Surf B Biointerfaces

Key Laboratory of Biomechanics and Tissue Engineering under the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.

Published: May 2007

In this paper, we studied the naphthalene degradation by using Pseudomonas aeruginosa under low-intensity ultrasonic stimulation. In our experiment, the degradation rate of naphthalene was the main parameter. We found that low-intensity ultrasonic could not only promote the growth of immobilized P. aeruginosa, but also could improve the degradation of naphthalene. In this article, 1% naphthalene was added into MM culture medium as imitation wastewater. The effect of low-intensity ultrasonic parameter and gel-globes size were considered. We found the influence was obvious, and the optimum degradation rate was acquired when the parameters of ultrasonic are: frequency, 24 kHz; power, 8 W; ultrasonic time, interval time, 10 s; total time, 10 m and the gel-globes were made by using injector no. 14. The naphthalene degradation rate of immobilized cells with ultrasonic stimulation is 82%, which is 12.9 and 42.2% higher than that of immobilized cells and suspended cells without ultrasonic stimulation, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2006.12.003DOI Listing

Publication Analysis

Top Keywords

low-intensity ultrasonic
16
ultrasonic stimulation
12
degradation rate
12
ultrasonic
8
naphthalene degradation
8
immobilized cells
8
cells ultrasonic
8
naphthalene
5
degradation
5
degrade naphthalene
4

Similar Publications

Mechanically Triggered Protein Desulfurization.

J Am Chem Soc

January 2025

New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

The technology of native chemical ligation and postligation desulfurization has greatly expanded the scope of modern chemical protein synthesis. Here, we report that ultrasonic energy can trigger robust and clean protein desulfurization, and we developed an ultrasound-induced desulfurization (USID) strategy that is simple to use and generally applicable to peptides and proteins. The USID strategy involves a simple ultrasonic cleaning bath and an easy-to-use and easy-to-remove sonosensitizer, titanium dioxide.

View Article and Find Full Text PDF

The therapeutic potential of extracellular vesicles (EVs) in bone regeneration is noteworthy; however, their clinical application is impeded by low yield and limited efficacy. This study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on the therapeutic efficacy of EVs derived from periodontal ligament stem cells (PDLSCs) and preliminarily explored its mechanism. PDLSCs were cultured with osteogenic media and stimulated with or without LIPUS, and then EVs and LIPUS-stimulated EVs (L-EVs) were isolated separately.

View Article and Find Full Text PDF

Acute Kidney Injury (AKI) is a significant medical condition characterized by the abrupt decline in kidney function.Low-intensity pulsed ultrasound (LIPUS), a non-invasive therapeutic technique employing low-intensity acoustic wave pulses, has shown promise in promoting tissue repair and regeneration. A novel LIPUS system was developed and evaluated in rat AKI models, focusing on its effects on glomerular filtration rate (GFR), blood urea nitrogen (BUN), serum creatinine (SCr), and the Notch1-Akt-eNOS signaling pathway.

View Article and Find Full Text PDF

Non-invasive, low intensity focused ultrasound is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported.

View Article and Find Full Text PDF

Although low-intensity focused ultrasound (LiFUS) with microbubbles is used to temporally open the blood-brain barrier (BBB), the underlying mechanism is not fully understood. This study aimed to analyze BBB-related alterations in the brain microenvironment after LiFUS, with a focus on the involvement of the purinergic P ×  receptor. Sprague-Dawley rats were sonicated with LiFUS at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!