Highly rigid and geometrically well-defined rods composed of ethynylene-substituted aromatic spacers [oligo(p-phenyleneethynylene), OPE] were incorporated as acyl moieties on diacylglycerol lactones (DAG-lactones) and investigated for their ability to bind to protein kinase C (PKC) and translocate PKC alpha and delta isoforms to plasma and internal membranes. The kinetics of PKC translocation were correlated with biological responses, viz. ERK phosphorylation, induction of IL-6 secretion, inhibition of cell proliferation, and induction of cellular attachment, that display very different time courses. Because OPE rods assemble through noncovalent forces and form stable films, they may influence the microdomain environment around the DAG-lactone membrane-binding site. A comparison of two DAG-lactones (1 and 10), one with two PE units (1) and the other with an equivalent flexible acyl chain (10) of matching lipophilicity, clearly demonstrated the effect of the rigid OPE chain in substantially prolonging the translocated state of both PKC alpha and delta.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm061289jDOI Listing

Publication Analysis

Top Keywords

alpha delta
12
protein kinase
8
kinase pkc
8
diacylglycerol lactones
8
lactones dag-lactones
8
pkc alpha
8
pkc
5
conformationally constrained
4
constrained analogues
4
analogues diacylglycerol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!