This paper presents the results of the investigation on the removal of Cr(VI) and the complex Cr(VI)-diphenylcarbazide from aqueous solutions using an electrochemical reactor, with iron electrodes. A maximum value of 99% Cr(VI) removal from aqueous solutions is observed for both Cr(VI) and Cr(VI)-diphenylcarbazide, at initial concentrations from 150 to 800 mg l(-1). Cyclic voltammetry experiments of water show the presence of electroactive species in the oxidation and reduction zones previous to the treatment and how this presence diminishes as the electrochemical treatment is applied to the wastewater. UV-Vis analyses corroborate the improvement on the quality of aqueous solutions treated. Finally, scanning electron microscopy and energy dispersion spectra show that Cr and Fe are present as constituents of the sludge formed during the electrochemical treatment. It was demonstrated that the use of electrochemical methods for the treatment of Cr(VI) and Cr(VI)-diphenylcarbazide aqueous solutions is an effective and economical method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593332808618758 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan.
V-shaped polyaromatic amphiphiles (s) form micelle-like nonbonded self-assemblies in aqueous solution and feature prominent properties of encapsulation and solubilization for various types of hydrophobic molecules. To understand microscopic molecular characteristics underlying the wide capability of solubilization, the atomic-level molecular structures of the self-assemblies of s were investigated by microsecond molecular dynamics (MD) simulations. The MD simulations showed that s spontaneously formed quasi-stable self-assemblies, in close agreement with experimental observations.
View Article and Find Full Text PDFSci Rep
January 2025
Hydrobiology Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA. Electronic address:
Background: Perfluorooctane sulfonate (PFOS), one of the most harmful members of the large group of per- and poly-fluoroalkyl substances (PFAS), is notorious for its environmental persistence, bioaccumulation, and toxic effects, raising serious environmental and health concerns. Developing rapid and sensitive methods to detect PFOS in water is critical for effective monitoring and protection against this hazardous chemical.
Results: In this study, we developed rapid and highly sensitive fluorometric sensors (PDI-2+ , PDI-6+ ) for detecting PFOS.
Int J Biol Macromol
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China. Electronic address:
A comprehensive study was conducted to determine the effects of water and ethylene glycol (EG) on biomass pretreatment using a binary deep eutectic solvent (DES) containing choline chloride and acetic acid (1ChCl3AC) at a mole ratio of 1:3. Different quantities of water and EG were combined with 1ChCl3AC to pretreat wheat straw, miscanthus, eucalyptus, and sorghum stalk at 130 °C for 6 h. The changes in nanopore structure and surface roughness of wet biomass, as well as biomass crystallinity after 1ChCl3AC-based pretreatment were investigated using XRD and small-angle neutron scattering (SANS).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Sivas Cumhuriyet University, Dept. of Physiology, Faculty of Veterinary Medicine, 58140, Türkiye.
In this study, the interaction of waste snake skin (Periostracum serpentis), a keratin-based biowaste composite material, with uranyl ions, the predominant form of uranium in aqueous solutions, was investigated to determine whether it could be used as an adsorbent. SEM, FTIR, BET and EDX analyses were performed to elucidate the material's surface and structural properties. The effects of the amount of adsorbent, uranyl ion concentration, pH, temperature, and adsorption time were investigated to optimize uranium removal with this material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!