Effects of xylene and formaldehyde inhalations on oxidative stress in adult and developing rats livers.

Exp Anim

Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Adnan Menderes University, P.K. 17, 09016 Isikli, Aydin, Turkey.

Published: January 2007

AI Article Synopsis

  • - The study investigated how exposure to xylene and formaldehyde affects oxidative stress in liver tissue and body weights of different age groups of female rats.
  • - Rats were divided into four age groups and exposed to varying concentrations of xylene and formaldehyde for 6 weeks; significant changes in liver and body weights were observed, particularly in the younger rats.
  • - Results suggested that younger rats were more negatively impacted, showing decreased antioxidant enzyme activity and altered biochemical markers, while adult rats had a better tolerance to the toxic gases.

Article Abstract

In this study, it was aimed to demonstrate the possible oxidative stress caused by exposure of xylene and formaldehyde (HCHO) on liver tissue, and on body and liver weights in adult as well as developing rats. The rats (96 female Sprague-Dawley) were randomly divided into four groups: embryonic day 1 (Group 1), 1-day-old infantile rats (Group 2), 4-week-old rats (Group 3) and adult rats (Group 4). The animals were exposed to gases of technical xylene (300 ppm), HCHO (6 ppm) or technical xylene + HCHO (150 ppm + 3 ppm), 8 hours per day for 6 weeks. Superoxide dismutase (SOD) and catalase (CAT) activities, and glutathione (GSH) and malondialdehyde (MDA) levels were evaluated. In addition, body and liver weights were determinated. Compared to the control animals, body and liver weights were decreased in the embryonic day 1 group (P < 0.001, P < 0.01, respectively) and the 1-day-old infantile group (P < 0.001). Liver weight was increased in the 4-week-old group (P < 0.01). SOD activities were decreased in the 4-week-old rats exposed to HCHO (P < 0.01). CAT activities increased in the embryonic day 1 group (P < 0.05). GSH levels were decreased in the 1-day-old infantile group (P < 0.01), and MDA levels was increased in the embryonic day 1 group (P < 0.05) as compared with the respective control groups. As to GSH and MDA levels in adult and 4-week-old animals, no statistically significant differences were observed (P > 0.05). The present study indicates that exposures to xylene, HCHO and a mixture of them are toxic to liver tissue, and developing female rats are especially more adversely affected. Furthermore, the results of this study show that adult female rats could better tolerate the adverse effects of these toxic gases.

Download full-text PDF

Source
http://dx.doi.org/10.1538/expanim.56.35DOI Listing

Publication Analysis

Top Keywords

embryonic day
16
day group
16
body liver
12
liver weights
12
1-day-old infantile
12
rats group
12
mda levels
12
group
10
rats
9
xylene formaldehyde
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!