Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
When addressing the use of fish for the environmental safety of chemicals and effluents, there are many opportunities for applying the principles of the 3Rs: Reduce, Refine, and Replace. The current environmental regulatory testing strategy for bioconcentration and secondary poisoning has been reviewed, and alternative approaches that provide useful information are described. Several approaches can be used to reduce the number of fish used in the Organization for Economic Cooperation and Development (OECD) Test Guideline 305, including alternative in vivo test methods such as the dietary accumulation test and the static exposure approach. The best replacement approach would seem to use read-across, chemical grouping, and quantitative structure-activity relationships with an assessment of the key processes in bioconcentration: Adsorption, distribution, metabolism, and excretion. Biomimetic extraction has particular usefulness in addressing bioavailable chemicals and is in some circumstances capable of predicting uptake. Use of alternative organisms such as invertebrates should also be considered. A single cut-off value for molecular weight and size beyond which no absorption will take place cannot be identified. Recommendations for their use in bioaccumulative (B) categorization schemes are provided. Assessment of biotransformation with in vitro assays and in silico approaches holds significant promise. Further research is needed to identify their variability and confidence limits and the ways to use this as a basis to estimate bioconcentration factors. A tiered bioconcentration testing strategy has been developed taking account of the alternatives discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1897/1551-3793(2007)3[3:aurrar]2.0.co;2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!