AI Article Synopsis

  • Neuromyelitis optica (NMO) is an inflammatory disease that primarily impacts the optic nerves and spinal cord, and its connection to multiple sclerosis (MS) is still unclear.
  • NMO lesions show a unique immune response with the presence of specific autoantibodies targeting aquaporin-4 (AQP4), which differs from the immune responses seen in MS.
  • A study revealed that regardless of the disease stage, all NMO lesions exhibit significant loss of AQP4, highlighting its role in the disease and distinguishing it from MS.

Article Abstract

Neuromyelitis optica (NMO) is an inflammatory demyelinating disease that typically affects optic nerves and spinal cord. Its pathogenic relationship to multiple sclerosis (MS) is uncertain. Unlike MS, NMO lesions are characterized by deposits of IgG and IgM co-localizing with products of complement activation in a vasculocentric pattern around thickened hyalinized blood vessels, suggesting a pathogenic role for humoral immunity targeting an antigen in the perivascular space. A recently identified specific serum autoantibody biomarker, NMO-IgG, targets aquaporin-4 (AQP4), the most abundant water channel protein in the CNS, which is highly concentrated in astrocytic foot processes. We analysed and compared patterns of AQP4 immunoreactivity in CNS tissues of nine patients with NMO, 13 with MS, nine with infarcts and five normal controls. In normal brain, optic nerve and spinal cord, the distribution of AQP4 expression resembles the vasculocentric pattern of immune complex deposition observed in NMO lesions. In contrast to MS lesions, which exhibit stage-dependent loss of AQP4, all NMO lesions demonstrate a striking loss of AQP4 regardless of the stage of demyelinating activity, extent of tissue necrosis, or site of CNS involvement. We identified a novel NMO lesion in the spinal cord and medullary tegmentum extending into the area postrema, characterized by AQP4 loss in foci that were inflammatory and oedematous, but neither demyelinated nor necrotic. Foci of AQP4 loss coincided with sites of intense vasculocentric immune complex deposition. These findings strongly support a role for a complement activating AQP4-specific autoantibody as the initiator of the NMO lesion, and further distinguish NMO from MS.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awl371DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
nmo lesions
12
neuromyelitis optica
8
multiple sclerosis
8
nmo
8
vasculocentric pattern
8
immune complex
8
complex deposition
8
loss aqp4
8
nmo lesion
8

Similar Publications

Background: Resection of calcified meningiomas in the ventral thoracic spinal canal remains a formidable surgical challenge despite advances in technology and refined microsurgical techniques. These tumors, which account for a small percentage of spinal meningiomas, are characterized by their hardness, complicating safe resection and often resulting in worse outcomes than their noncalcified counterparts.

Observations: The authors present the case of a 68-year-old woman with a ventrally located ossified meningioma at the T9-10 level, successfully treated via a posterolateral transpedicular approach.

View Article and Find Full Text PDF

Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals.

View Article and Find Full Text PDF

The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice.

View Article and Find Full Text PDF

Testosterone, an essential sex steroid hormone, influences brain health by impacting neurophysiology and neuropathology throughout the lifespan in both genders. However, human research in this area is limited, particularly in women. This study examines the associations between testosterone levels, gray matter volume (GMV) and cerebral blood flow (CBF) in midlife individuals at risk for Alzheimer's disease (AD), according to sex and menopausal status.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to describe the development and key features of the Prospera™ Spinal Cord Stimulation (SCS) System, as well as the clinical evidence supporting its use. Prospera delivers therapy using a proprietary multiphase stimulation paradigm and is the first SCS system to offer proactive care through automatic, objective, daily, remote device monitoring and remote programming capabilities.

Recent Findings: Results from the recently published BENEFIT-02 trial support the short-term safety and efficacy of multiphase stimulation in patients with chronic pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!