Finite element modeling of human head from MRI.

Conf Proc IEEE Eng Med Biol Soc

College of Electrical Engineering, Zhejiang University, P.R. China.

Published: October 2012

The FEM geometry modeling of realistic head is a key issue for the research on FEM-based EEG/MEG. In this paper, a methodology is developed to construct this kind of model. By using this method, a five-layer realistic head FEM model is obtained, and with its application in FEM-based EEG, a satisfying result shows the reliability of the model.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2005.1616986DOI Listing

Publication Analysis

Top Keywords

realistic head
8
finite element
4
element modeling
4
modeling human
4
human head
4
head mri
4
mri fem
4
fem geometry
4
geometry modeling
4
modeling realistic
4

Similar Publications

A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 s after initial model assembly using a regular workstation.

View Article and Find Full Text PDF

Unlabelled: 3D cell culture is gaining momentum in medicine due to its ability to mimic real tissues () and provide more accurate biological data compared to traditional methods. This review explores the current state of 3D cell culture in medicine and discusses future directions, including the need for standardization and simpler protocols to facilitate wider use in research.

Purpose: 3D cell culture develops life sciences by mimicking the natural cellular environment.

View Article and Find Full Text PDF

Toward the Bayesian brain: a generative model of information transmission by vestibular sensory neurons.

Front Neurol

December 2024

Department of Head and Neck Surgery and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.

The relative accessibility and simplicity of vestibular sensing and vestibular-driven control of head and eye movements has made the vestibular system an attractive subject to experimenters and theoreticians interested in developing realistic quantitative models of how brains gather and interpret sense data and use it to guide behavior. Head stabilization and eye counter-rotation driven by vestibular sensory input in response to rotational perturbations represent natural, ecologically important behaviors that can be reproduced in the laboratory and analyzed using relatively simple mathematical models. Models drawn from dynamical systems and control theory have previously been used to analyze the behavior of vestibular sensory neurons.

View Article and Find Full Text PDF

Background: New surgeons experience heavy workload during robot-assisted surgery partially because they must use vision to compensate for the lack of haptic feedback. We hypothesize that providing realistic haptic feedback during dry-lab simulation training may accelerate learning and reduce workload during subsequent surgery on patients.

Methods: We conducted a single-blinded study with 12 general surgery residents (third and seventh post-graduate year, PGY) randomized into haptic and control groups.

View Article and Find Full Text PDF

Background: Carbon-ion radiotherapy provides steep dose gradients that allow the simultaneous application of high tumor doses as well as the sparing of healthy tissue and radio-sensitive organs. However, even small anatomical changes may have a severe impact on the dose distribution because of the finite range of ion beams.

Purpose: An in-vivo monitoring method based on secondary-ion emission could potentially provide feedback about the patient anatomy and thus the treatment quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!