Most of the patients who are in hospitals and, increasingly, patients controlled remotely from their homes, at-home monitoring, are continuously monitored in order to control their evolution. The medical devices used up to now, force the sanitary staff to go to the patients' room to control the biosignals that are being monitored, although in many cases, patients are in perfect conditions. If patient is at home, it is he or she who has to go to the hospital to take the record of the monitored signal. New wireless technologies, such as BlueTooth and WLAN, make possible the deployment of systems that allow the display and storage of those signals in any place where the hospital intranet is accessible. In that way, unnecessary displacements are avoided. This paper presents a network architecture that allows the identification of the biosignal acquisition device as IP network nodes. The system is based on a TCP/IP architecture which is scalable and avoids the deployment of a specific purpose network.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2005.1616960DOI Listing

Publication Analysis

Top Keywords

network architecture
8
network
4
architecture global
4
global biomedical
4
biomedical monitoring
4
monitoring service
4
service patients
4
patients hospitals
4
hospitals increasingly
4
increasingly patients
4

Similar Publications

Several recent studies have optimized deep neural networks to learn high-dimensional relationships linking structural and functional connectivity across the human connectome. However, the extent to which these models recapitulate individual-specific characteristics of resting-state functional brain networks remains unclear. A core concern relates to whether current individual predictions outperform simple benchmarks such as group averages and null conditions.

View Article and Find Full Text PDF

A generative model of the connectome with dynamic axon growth.

Netw Neurosci

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.

Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.

View Article and Find Full Text PDF

Point mutations at codon 600 of the BRAF oncogene are the most common alterations in cutaneous melanoma (CM). Assessment of BRAF status allows to personalize patient management, though the affordability of molecular testing is limited in some countries. This study aimed to develop a model for predicting alteration in BRAF based on routinely available clinical and histological data.

View Article and Find Full Text PDF

A novel methodology for dataset augmentation in the semantic segmentation of coil-coated surface degradation is presented in this study. Deep convolutional generative adversarial networks (DCGAN) are employed to generate synthetic input-target pairs, which closely resemble real-world data, with the goal of expanding an existing dataset. These augmented datasets are used to train two state-of-the-art models, U-net, and DeepLabV3, for the precise detection of degradation areas around scribes.

View Article and Find Full Text PDF

Coronary artery disease (CAD) remains a leading global cause of morbidity and mortality, underscoring the need for effective cardiovascular risk stratification and preventive strategies. Coronary artery calcium (CAC) scoring, traditionally performed using electrocardiogram (ECG)-gated cardiac computed tomography (CT) scans, has been widely validated as a robust tool for assessing cardiovascular risk. However, its application has been largely limited to high-risk populations due to the costs, technical requirements, and limited accessibility of cardiac CT scans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!