We report the development of an implantable multifunctional (glucose and cholesterol) needle type biosensor with integrated RF wireless circuitry for continuous in vivo monitoring of metabolites during short term stays in emergency room or intensive care unit. Silicon-based MEMS technologies are used for the fabrication of micro needle sensors. The whole device is covered by a biocompatible Parylene layer with opening structure at the active areas of electrodes. Electropolymerization of active biomolecules and conducting polymer provides in situ nanoscale physical entrapments of various oxidoreductases (Glucose oxidase and cholesterol oxidase) and functions as a viable matrix for the construction of micro amperometric biosensors. Hybrid CMOS fabrication processes are used to accomplish the 433 MHz ASK RF transmitter and receiver (0.18μm CMOS 1P6M process) and the data converter (0.35μm CMOS 2P4M process). We will present and discuss the detail design and the integrated system performance in this paper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2005.1616830 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!