Deblurring in the presence of non-Gaussian noise is a hard problem, specially in ultrasonic and CT images. In this paper, a new method of image restoration, using complex wavelet transform, has been devised and applied to deblur in the presence of high speckle noise. It has been shown that the new method outperforms the Weiner filtering and Fourier-wavelet regularized deconvolution (ForWaRD) methods for both ultrasonic and CT images. Unlike Fourier and real wavelet transforms, complex wavelet transform is nearly shift-invariant. This gives complex wavelet transform an edge over other traditional methods when applied simultaneously for deblurring as well as denoising. The proposed method is independent of any assumption about the degradation process. It is adaptive, as it uses shrinkage function based on median and mean of absolute wavelet coefficient as well as standard deviation of wavelet coefficients. Its application on real spiral CT images of inner ear has shown a clear improvement over other methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2005.1616821DOI Listing

Publication Analysis

Top Keywords

complex wavelet
16
wavelet transform
16
ultrasonic images
8
wavelet
7
method
4
method deblurring
4
deblurring denoising
4
denoising medical
4
images
4
medical images
4

Similar Publications

Automated Classification of Cardiac Arrhythmia using Short-Duration ECG Signals and Machine Learning.

Biomed Phys Eng Express

January 2025

Electronics and Communication Engineering, Rajiv Gandhi University, Rono Hills, Doimukh, ITANAGAR, Itanagar, Arunachal Pradesh, 791112, INDIA.

Accurate detection of cardiac arrhythmias is crucial for preventing premature deaths. The current study employs a dual-stage Discrete Wavelet Transform (DWT) and a median filter to eliminate noise from ECG signals. Subsequently, ECG signals are segmented, and QRS regions are extracted for further preprocessing.

View Article and Find Full Text PDF

Research on bearing fault diagnosis based on a multimodal method.

Math Biosci Eng

December 2024

School of Information Engineering, Nantong Institute of Technology, Nantong 226002, Jiangsu, China.

As an essential component of mechanical systems, bearing fault diagnosis is crucial to ensure the safe operation of the equipment. However, vibration data from bearings often exhibit non-stationary and nonlinear features, which complicates fault diagnosis. To address this challenge, this paper introduces a novel multi-scale time-frequency and statistical features fusion model (MTSF-FM).

View Article and Find Full Text PDF

Automated Classification of Cardiac Arrhythmia using Short-Duration ECG Signals and Machine Learning.

Biomed Phys Eng Express

January 2025

Electronics and Communication Engineering, Rajiv Gandhi University, Rono Hills, Doimukh, ITANAGAR, Itanagar, Arunachal Pradesh, 791112, INDIA.

Accurate detection of cardiac arrhythmias is crucial for preventing premature deaths. The current study employs a dual-stage Discrete Wavelet Transform (DWT) and a median filter to eliminate noise from ECG signals. Subsequently, ECG signals are segmented, and QRS regions are extracted for further preprocessing.

View Article and Find Full Text PDF

Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.

View Article and Find Full Text PDF

Efficient Data Sampling Scheme to Reduce Acquisition Time in Statistical ALCHEMI.

Microscopy (Oxf)

January 2025

Department of Materials Physics, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.

The distribution of dopants in host crystals significantly influences the chemical and electronic properties of materials. Therefore, determining this distribution is crucial for optimizing material performance. The previously developed statistical ALCHEMI (St-ALCHEMI), an extension of the atom-location by channeling-enhanced microanalysis (ALCHEMI) technique, utilizes variations in electron channeling based on the beam direction relative to the crystal orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!