We propose a new analysis method to detect phase coupling behaviour of the human gastric interdigestive pressure wave that has been acquired by a telemetric capsule-like mini-robot. The method is referred to as diagonal slice spectra, which are the Fourier transforms of the diagonal slices of the triple correlation and can detect the phase coupling and coupled components respectively. It is shown that nonlinear quadratic phase coupling occurs during gastric contraction (phase II), whereas no distinct phase coupling occurs during gastric motor quiescence (phase I).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2005.1616407 | DOI Listing |
Nanotechnology
January 2025
MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.
Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA.
High-energy extensions to general relativity modify the Einstein-Hilbert action with higher-order curvature corrections and theory-specific coupling constants. The order of these corrections imprints a universal curvature dependence on observations while the coupling constant controls the deviation strength. In this Letter, we leverage the theory-independent expectation that modifications to the action of a given order in spacetime curvature (Riemann tensor and contractions) lead to observational deviations that scale with the system length scale to a corresponding power.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
School of Physics, Beihang University, Haidian District, Beijing 100191, China.
Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies of α-Bi_{4}I_{4}, which reveals the realization of massive Dirac fermions in the (100) surface states without breaking the time-reversal symmetry. Combined with first-principles calculations, our experimental results indicate that the spontaneous symmetry breaking engenders two nondegenerate edge states at the opposite sides of monolayer Bi_{4}I_{4} after the structural phase transition, imparting mass to the Dirac fermions after taking the interlayer coupling into account.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA.
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria.
The efficient readout of the relevant information is pivotal for quantum simulation experiments. Often only single observables are accessed by performing standard projective measurements. In this work, we implement an atomic beam splitter by controlled outcoupling that enables a generalized measurement scheme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!