Because of the overwhelming scattering of light in biological tissues, the spatial resolution and imaging depth of conventional fluorescent imaging is unsatisfactory. Therefore, we present a dual modality imaging technique by combining fluorescence imaging with high-resolution noninvasive photoacoustic tomography (PAT) for the study of an animal tumor model. PAT provides high-resolution structural images of tumor angiogenesis, and fluorescence imaging offers high sensitivity to molecular probes for tumor detection. Coregistration of the PAT and fluorescence images was performed on nude mice with M21 human melanoma cell lines with ..v..3 integrin expression. An integrin ..v..3-targeted peptide-ICG conjugated NIR fluorescent contrast agent was used as the molecular probe for tumor detection. PAT was employed to noninvasively image the brain structure and the angiogenesis associated with tumors in mice. The coregistration between the PAT and fluorescence images was used to visualize tumor location, angiogenesis, and brain structure simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2005.1616374 | DOI Listing |
Biol Trace Elem Res
January 2025
Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang 050071, Hebei, China.
Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.
View Article and Find Full Text PDFJpn J Ophthalmol
January 2025
Institute for Photon Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Purpose: There is no established method for visualizing the three-dimensional (3D) structure of the aqueous humor outflow tract. This study attempted to visualize the 3D structures of porcine and human ocular tissues, particularly the aqueous humor outflow tract using a transparency reagent composed of 2, 2-thiodiethanol.
Study Design: Clinical and experimental.
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFACS Nano
January 2025
Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada.
The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
As the most common and lethal cancer of the female gonads, ovarian cancer (OC) has a grave impact on people's health. OC is asymptomatic, insidious in onset, difficult to diagnose and treat, fast-growing, and easy to metastasize and has poor prognosis and high mortality. How to detect OC as early as possible and treat it without side effects has become a challenging medical problem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!