Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite the synthetic peptides inhibit HIV-1 entry; its application of this peptide therapy may be limited due to the high cost of the peptide production and lack of its oral availability. Thus, it is necessary to identify the small molecule inhibitors reacting with the same or overlapping target sites on gp41 recognizing the antiviral peptides. In this work, a small inhibitor (TP1) is docked into the hydrophobic grooves of gp41 by using AutoDock software, resulting in five alternative energetically favorable models. The data from other studies were used to define our preferred models. We found that only one binding mode is supported by the experimental evidence. The model could be used to design more effective HIV-1 inhibitors targeted to the HIV-1 gp41 core structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2005.1615534 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!