Based on the core theorem of the frequency domain coherence in signal processing, called as double spectral theorem, we presented the two types of new magnitude-squared coherence function (MSCFs) in order to extract the coherence between two signals and gave the conditions that they are equal to 1 or 0. Here, we further studied their properties sensitive to initial phases of two signals and phase difference between two signals. Studying demonstrated that the two type MSCFs not only reflect frequency domain coherence of two signals, but also reflect phase relationship between two signals. One is sensitive to the phase difference between two signals and the other is either sensitive to the initial phases or phase difference between two signals. We call the properties as their properties sensitive to phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2005.1615519 | DOI Listing |
Langmuir
January 2025
Centre for Nano and Soft Matter Sciences, Shivanapura, Dasanapura Hobli, Bangalore 562162, India.
The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.
View Article and Find Full Text PDFJAMA Otolaryngol Head Neck Surg
January 2025
Department of Otolaryngology/Head and Neck Surgery, Washington University in St Louis School of Medicine, St Louis, Missouri.
Importance: Given the favorable overall prognosis of human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) and the morbidity of increased adjuvant therapy associated with positive surgical margins, large-scale studies on the accuracy of frozen sections in predicting final surgical margin status in HPV-related OPSCC are imperative. Final surgical margin status is the definitive assessment of tumor clearance as determined through surgeon-pathologist collaboration based on permanent analysis of frozen section margins, main specimens, and supplemental resections.
Objectives: To assess the accuracy and testing properties of intraoperative frozen section histology (IFSH) in assessing final surgical margin status in patients undergoing transoral surgery for HPV-related OPSCC.
Dokl Biochem Biophys
January 2025
Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency, Moscow, Russia.
Unlabelled: The association of the pathogenesis of neurodegenerative diseases, depression, anxiety, and cognitive disorders with neurotrophin-3 deficiency determines the prospect of creating drugs with a similar mechanism of action. Since the use of full-length NT-3 is limited by unsatisfactory pharmacokinetic properties, the creation of low-molecular mimetics of neurotrophin-3 that are active when administered systemically is relevant. The Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies has created a dimeric dipeptide mimetic of the 4th loop of NT-3, hexamethylenediamide bis-(N-γ-oxybutyryl-L-glutamyl-L-asparagine) with the laboratory code GTS-302, which activates TrkC and TrkB receptors.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Infectious Disease Department, Hangzhou First People's Hospital Tonglu Hospital, Hangzhou, Zhejiang, China.
This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.
View Article and Find Full Text PDFSmall
January 2025
Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!