Genetic programming artificial features with applications to epileptic seizure prediction.

Conf Proc IEEE Eng Med Biol Soc

Michigan State University, 2120 Engineering Building, East Lansing, MI 48824 USA.

Published: October 2012

In this paper, we propose a general-purpose, systematic algorithm, consisting of a genetic programming module and a k-nearest neighbor classifier to automatically create artificial features (i.e., features that are computer crafted and may not have a known physical meaning) directly from the reconstructed state-space trajectory of the EEG signals that reveal patterns predictive of epileptic seizures. The algorithm was evaluated in three different patients, with prediction defined over a horizon of 5 minutes before unequivocal electrographic onset. Experiments are carried out using 20 baseline epochs (non-seizures) and 18 preictal epochs (pre-seizures). Results show that just two seizures were missed while a perfect classification on the baseline epochs was achieved, yielding a 0.0 false positive per hour.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2005.1615471DOI Listing

Publication Analysis

Top Keywords

genetic programming
8
artificial features
8
baseline epochs
8
programming artificial
4
features applications
4
applications epileptic
4
epileptic seizure
4
seizure prediction
4
prediction paper
4
paper propose
4

Similar Publications

VPO1 Promotes Programmed Necrosis of Cardiomyocytes in Rats with Chronic Heart Failure by Upregulating CYLD.

Front Biosci (Landmark Ed)

December 2024

Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.

Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.

View Article and Find Full Text PDF

Optimization of Existing RNA Visualization Methods Reveals Novel Dendritic mRNA Dynamics.

Front Biosci (Landmark Ed)

December 2024

Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.

Background: Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging.

View Article and Find Full Text PDF

Universal in the United States (US) since 2006, newborn screening (NBS) programs for sickle cell disease (SCD) allow for early identification of the disease and, as an unintentional byproduct, identification of sickle cell trait (SCT). Unlike other carrier states, SCT is highly prevalent and is found in nearly 3 million Americans, which results in important reproductive implications. Currently, all NBS programs in the US are responsible for their own policies regarding SCT notification, and little is known about how SCT notification practices are performed and how these practices vary across NBS programs.

View Article and Find Full Text PDF

Subcellular spatial regulation of immunity-induced phosphorylation of RIN4 links PAMP-triggered immunity to Exo70B1.

Front Plant Sci

December 2024

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States.

RIN4 is a crucial regulator of plant immunity, playing a role in both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). While the impact of post-translational modifications (PTMs) on RIN4 has been extensively studied, their specific effects on plant immune response regulation and the underlying mechanisms have remained unclear. In this study, we investigated the phosphorylation of RIN4 at threonine-166 (RIN4) in transgenic lines expressing various RIN4 variants.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors play an important role in the treatment of solid tumors, but the currently used immune checkpoint inhibitors targeting programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4) show limited clinical efficacy in many breast cancers. B7H3 has been widely reported as an immunosuppressive molecule, but its immunological function in breast cancer patients remains unclear.

Methods: We analyzed the expression of B7H3 in breast cancer samples using data from the Cancer Genome Atlas Program (TCGA) and the Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!