Analysis of heart rate variation (HRV) has become a popular noninvasive tool for assessing the activities of the autonomic nervous system (ANS). HRV analysis is based on the concept that fast fluctuations may specifically reflect changes of sympathetic and vagal activity. It shows that the structure generating the signal is not simply linear, but also involves nonlinear contributions. These signals are essentially non-stationary; may contain indicators of current disease, or even warnings about impending diseases. The indicators may be present at all times or may occur at random in the time scale. However, to study and pinpoint abnormalities in voluminous data collected over several hours is strenuous and time consuming. This paper presents the continuous time wavelet analysis of heart rate variability signal for disease identification. Phase space plots of heart rate signal for a chosen embedding dimension are compared with the wavelet analysis patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2005.1615305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!