On-line Detection of Perceptual Signatures in Multichannel ECoG.

Conf Proc IEEE Eng Med Biol Soc

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611.

Published: October 2012

Neocortical ECoG studies have unveiled the presence of active states - spatial patterns of amplitude modulation- in the beta- gamma ranges in the presence of conditioned stimuli that resemble cinematographic frames. These sequences of active frames emerge with abrupt phase resettings, followed by resynchronization and stabilization over channels, and magnified intensity. An online pattern recognizer that captures the spatial and spectral characteristics of the active frames is presented. The results of detection are confirmed via high occurrences of pragmatic information, defined by the ratio of pattern intensity to pattern stability.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2005.1617281DOI Listing

Publication Analysis

Top Keywords

active frames
8
on-line detection
4
detection perceptual
4
perceptual signatures
4
signatures multichannel
4
multichannel ecog
4
ecog neocortical
4
neocortical ecog
4
ecog studies
4
studies unveiled
4

Similar Publications

Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis.

Proc Natl Acad Sci U S A

January 2025

Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.

SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how variants contribute to the spectrum of axial skeletal disorders is not well understood.

View Article and Find Full Text PDF

Optimized genetic tools for neuroanatomical and functional mapping of the Aedes aegypti olfactory system.

G3 (Bethesda)

January 2025

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.

The mosquito Aedes aegypti is an emerging model insect for invertebrate neurobiology. We detail the application of a dual transgenesis marker system that reports the nature of transgene integration with circular donor template for CRISPR-Cas9-mediated homology-directed repair at target mosquito chemoreceptor genes. Employing this approach, we demonstrate the establishment of cell-type-specific T2A-QF2 driver lines for the A.

View Article and Find Full Text PDF

L-asparaginase (asparagine amidohydrolase) contributes to 40% of the total enzyme demands worldwide and is one-third of the global requirement as an anti-cancerous drug in treating acute lymphocytic leukemia (ALL), a type of leukemia. This protein breaks down L-asparagine into aspartic acid and ammonia those involved in ALL, rely on for growth and survival. Both non-recombinant and recombinant L-asparaginase can be produced by bacteria when a suitable substrate and method (solid-state fermentation (SSF) or submerged fermentation (SmF) which are techniques to grow microorganisms under controlled conditions), is provided.

View Article and Find Full Text PDF

Biological Characteristics and Whole-Genome Analysis of a Porcine Phage.

Vet Sci

January 2025

College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.

(1) Background: In recent years, the increasing emergence of multidrug-resistant pathogens in pig farms has begun to pose a severe threat to animal welfare and, by extension, public health. In this study, we aimed to explore the biological characteristics and genomic features of bacteriophages that are capable of lysing porcine multidrug-resistant , which was isolated from sewage. In doing so, we provided a reference for phage therapies that can be used to treat multidrug-resistant strains.

View Article and Find Full Text PDF

Intranasal vaccination enhances protection against respiratory viruses by providing stimuli to the immune system at the primary site of infection, promoting a balanced and effective response. Influenza vectors with truncated NS1 are a promising vaccine approach that ensures a pronounced local CD8+ T-cellular immune response. Here, we describe the protective and immunomodulating properties of an influenza vector FluVec-N carrying the C-terminal fragment of the SARS-CoV-2 nucleoprotein within a truncated NS1 open reading frame.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!