Chronic pain states and epilepsies are common therapeutic targets of voltage-gated sodium channel blockers. Inhibition of sodium channels results in central muscle relaxant activity as well. Selective serotonin reuptake inhibitors are also applied in the treatment of pain syndromes. Here, we investigate the pharmacodynamic interaction between these two types of drugs on spinal neurotransmission in vitro and in vivo. Furthermore, the ability of serotonin reuptake inhibitors to modulate the anticonvulsant and windup inhibitory actions and motor side effect of the sodium channel blocker lamotrigine was investigated. In the hemisected spinal cord model, we found that serotonin reuptake inhibitors increased the reflex inhibitory action of sodium channel blockers. The interaction was clearly more than additive. The potentiation was prevented by blocking 5-HT(2) receptors and PKC, and mimicked by activation of these targets by selective pharmacological tools, suggesting the involvement of 5-HT(2) receptors and PKC in the modulation of sodium channel function. The increase of sodium current blocking potency of lamotrigine by PKC activation was also demonstrated at cellular level, using the whole-cell patch clamp method. Similar synergism was found in vivo, in spinal reflex, windup, and maximal electroshock seizure models, but not in the rotarod test, which indicate enhanced muscle relaxant, anticonvulsant and analgesic activities with improved side effect profile. Our findings are in agreement with clinical observations suggesting that sodium channel blocking drugs, such as lamotrigine, can be advantageously combined with selective serotonin reuptake inhibitors in some therapeutic fields, and may help to understand the molecular mechanisms underlying the interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2006.12.008 | DOI Listing |
Sci Rep
December 2024
School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA.
Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.
View Article and Find Full Text PDFSci Rep
December 2024
Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.
View Article and Find Full Text PDFRespir Physiol Neurobiol
December 2024
Department of Pathophysiology Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia. Electronic address:
Background: Allergic rhinitis (AR) is a common cause of chronic cough, linked to dysregulated airway C- and Aδ-fibres through inflammatory mediators. Despite the limited efficacy of current antitussive therapies, recent studies show that the Na1.7 inhibitor can block cough in naïve guinea pigs.
View Article and Find Full Text PDFClin Transl Gastroenterol
December 2024
Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
Introduction: Hypoalgesic inflammatory bowel disease (IBD) may provide critical insights into human abdominal pain. This condition was previously associated with homozygosity for a polymorphism (rs6795970, A1073V; 1073 val/val ) related to Na v 1.8, a voltage-gated sodium channel preferentially expressed on nociceptors.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!