We have observed large pores in the membrane of giant vesicles in an aqueous medium. The lifetime of the pores can reach 2 min and their size (a few micrometers) enables their visualization by fluorescence microscopy. These pores are obtained thanks to a destabilization of the membrane due to the synergistic action of a cone-shaped and nitrobenzodiazole (NBD) labeled phospholipid illuminated in the presence of dithionite. The opening of the pore occurs immediately after illumination starts so that it can be accurately triggered. A concomitant decrease of the vesicle radius is observed; we interpret it as a solubilization of the membrane. Depending on the rate of this solubilization, long- or short-lived pores were observed. At the transition between both regimes for a 30 microm vesicle, the solubilization rate was about 1/300 s{-1} . In order to interpret these observations, we have revisited the current model of pore opening to take into account this solubilization. This proposed model along with simulations enables us to prove that solubilization explains why the large long-lived pores are observed even in an aqueous medium. The model also predicts the solubilization rate at the transition between a single long-lived pore and a cascade of short-lived pores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.74.061902 | DOI Listing |
ACS Omega
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.
Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.
Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.
Molecules
January 2025
Department of Physical Chemistry, Plovdiv University "Paisii Hilendarski", 24, Tzar Assen Str., 4000 Plovdiv, Bulgaria.
Lipid peroxidation is a major process that determines the quality of various oil samples during their use and storage, in which the primary products are hydroperoxides (HP'). HP' are very stable compounds at ambient conditions and are harmful to human health. Therefore, the evaluation of the degree of oil oxidation is an excellent tool for ensuring food safety.
View Article and Find Full Text PDFMolecules
January 2025
Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, 4 allée Emile Monso, 31030 Toulouse, France.
In organic synthesis, the solvent is the chemical compound that represents the largest proportion of the process. However, conventional solvents are often toxic and dangerous for the environment, and an interesting alternative is to replace them by water. In this context, catalyst surfactants allow both organic reagents in water to be solubilized and organic reactions to be catalyzed.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali 140413, Punjab, India.
Novel studies on typical synthesized magnetite nanoparticles were encapsulated into a poly (butylene succinate)/poly (ethylene glycol) copolymer (PBS-PEG). PBS was chosen because of its biocompatibility characteristics necessary for biomedical applications. PEG, as part of the macromolecular structure, increases the hybrid system's solubility in an aqueous environment, increasing the circulation time of the material in the bloodstream.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!