The complexes [MCl(2)(kappa2-N approximately N')] (N approximately N' = 2-C(5)H(4)N-CH2-NHAr; Ar = 4-MeC(6)H(4), a; 2,6-Me(2)C(6)H(3), b; 4-MeOC(6)H(4), c; 4-CF(3)C(6)H(4), d; M = Pd, 1a-d; Pt, 2a-d) have been prepared and fully stereochemically characterized both in the solid state and in solution. Their behavior in DMSO-d6 solution is dependent on the substituents of the aryl group and on the metal. Complexes of palladium with substituents at the para position (1a, 1c, 1d) display a dynamic 1H NMR pattern when the solutions are heated. An enantiomeric exchange Slambda/Rdelta is suggested to explain such behavior. On the basis of the calculated negative DeltaS values, an associative mechanism involving the solvent is proposed. Under the same conditions, analogous complexes of platinum (2a, 2c, 2d) proved to be unstable, and release of the N approximately N' ligand was observed. Complexes 1b and 2b show temperature-variable 1H NMR spectra without any evidence accounting for enantiomeric exchange or decoordination. DFT calculations on models of 1a and 1b show that diastereomeric exchange Sdelta/Slambda is a process where the complex with the higher sterical hindrance, 1b, has a lower energy barrier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic061060u | DOI Listing |
Angew Chem Int Ed Engl
December 2024
National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China.
Polyhydroxyalkanoates (PHAs) have attracted broad interest as promising sustainable materials to address plastic pollution and resource scarcity. However, the chemical synthesis of stereoregular PHAs via ring-opening polymerization (ROP) has long been an elusive endeavor. In this contribution, we exploited a robust spiro-salen yttrium complex (Y3) as the catalyst to successfully prepare syndiotactic PHAs with diverse pendent groups.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
Semiconductor colloidal nanostructures capped with chiral organic molecules are a research hotspot due to their wide range of important implications for photonic and spintronic applications. However, to date, the study of chiral ligands has been limited almost exclusively to naturally occurring chiral amino and hydroxy acids, which typically contain only one stereocenter. Here, we show the pronounced induction of chirality in atomically thin CdSe nanoplatelets (NPLs) by capping them with enantiopure menthol derivatives as multi-stereocenter molecules.
View Article and Find Full Text PDFAmino Acids
December 2024
Scientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str, 0056, Yerevan, Armenia.
Angew Chem Int Ed Engl
December 2024
Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str.16, 64287, Darmstadt, Germany.
Modern nuclear magnetic resonance (NMR) methods like carbon relaxation dispersion in the rotating frame (C-R) and proton chemical exchange saturation transfer (H-CEST) are key methods to investigate molecular recognition in biomacromolecules and to detect molecular motions on the μs to s timescale, revealing transient conformational states. Changes in kinetics can be linked to binding, folding, or catalytic events. Here, we investigated whether these methods allow detection of changes in the dynamics of a small, highly selective peptide catalyst during recognition of its enantiomeric substrates.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100115, Ecuador.
Electropolymerization is a convenient way to obtain conducting polymers (CPs) directly adhered to an electrode surface. CPs are well-known for their various application fields in photovoltaic cells, chemical sensors, and electronics. By implementing chirality into a CP, the application possibilities will spread further onto chiral sensors or optoelectronics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!