The red, five-coordinate complexes Ru(CO)Cl(PPh(3))2(CH=CHPh) and [Ru(CO)Cl(PPh(3))2]2(mu-CH=CHC(6)H(4)CH=CH) undergo reversible coordination of PPh(3) at low temperature to produce the pale yellow, six-coordinate complexes Ru(CO)Cl(PPh(3))3(CH=CHPh) and [Ru(CO)Cl(PPh(3))3]2(mu-CH=CHC(6)H(4)CH=CH). X-ray crystal structures of the latter complex and of the hydride complex RuH(CO)Cl(PPh(3))3 were obtained. 1H and 31P NMR spectra between 20 and -70 degrees C exhibit large changes in both equilibrium constants and dynamic effects. Thermodynamic parameters, DeltaH = -17.5 +/- 2.0 kcal/mol and DeltaS = -57.5 +/- 7.6 eu, were obtained for PPh(3) coordination to the monoruthenium complex, and activation parameters, DeltaH = 20.6 +/- 0.7 kcal/mol and DeltaS = 41.6 +/- 2.0 eu, were obtained for the reverse decoordination. Coordination of PPh(3) was not observed upon cooling of the shorter bridged complex, [Ru(CO)Cl(PPh(3))2]2(mu-CH=CHCH=CH).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic061389fDOI Listing

Publication Analysis

Top Keywords

coordination pph3
8
parameters deltah
8
+/- kcal/mol
8
kcal/mol deltas
8
temperature-dependent coordination
4
coordination phosphine
4
phosphine five-coordinate
4
five-coordinate alkenylruthenium
4
alkenylruthenium complexes
4
complexes red
4

Similar Publications

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

View Article and Find Full Text PDF

The extent of coordination-induced bond weakening in aquo and hydroxo ligands bonded to a molybdenum(III) center complexed by a dianionic, pentadentate ligand system was probed by reacting the known complex (BPzPy)Mo(III)-NTf, , with degassed water or dry lithium hydroxide. The aquo adduct was not observed, but two LiNTf-stabilized hydroxo complexes were fully characterized. Computational and experimental work showed that the O-H bond in these complexes was significantly weakened (to ≈57 kcal mol), such that these compounds could be used to form the diamagnetic, neutral terminal molybdenum oxo complex (BPzPy)Mo(IV)O, , by hydrogen atom abstraction using the aryl oxyl reagent ArO• (Ar = 2,4,6-tri--butylphenyl).

View Article and Find Full Text PDF

The templating properties of a diaza-nickel--dithiolate towards triphenylphosphine gold(I), yielding a [Ni(NS)·2Au(PPh)] complex (T. A. Pinder, S.

View Article and Find Full Text PDF

Metal complexes with -Bu-substituted allyl ligands are relatively rare, especially compared to their conceptually similar trimethylsilyl-substituted analogs. The scarcity partially stems from the few general synthetic entry points for the -Bu versions. This situation was studied through a modified synthesis for the allyl ligand itself and by forming several mono(allyl)nickel derivatives.

View Article and Find Full Text PDF

The Interplay of Cyclometalated-Ir and Mesoionic Imines: Stoichiometric and Catalytic Reactivities.

Inorg Chem

December 2024

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

Article Synopsis
  • Triazole-based mesoionic imines (MIIs) are a novel class of compounds with unique electronic structures and chemical reactions, exhibiting strong hydrogen bonding that influences their C-H activation selectivity and UV-vis properties.
  • The cyclometalated iridium complexes with MIIs can form either unsaturated compounds or dimers, depending on their substituents, and can react with various substrates, including rare Cp*Ir complexes with CO and ethyl ligands.
  • These complexes have the potential for innovative catalytic applications, such as transfer hydrogenation and producing unique bicyclic compounds through reactions with alkynes, highlighting the promising reactivity of MIIs in organometallic chemistry.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!