Organic nanoparticles of cholesterol and retinol have been synthesized in various AOT (Aerosol OT; sodium bis(2-ethylhexyl) sulfosuccinate)/heptane/water microemulsions by direct precipitation of the active principle in the aqueous cores. The nanoparticles are observed by transmission electron microscopy (TEM) using the adsorption of a contrasting agent, such as iodine vapor. The size of the nanoparticles can be influenced, in principle, by the concentration of the organic molecules and the diameter of the water cores, which is related to the ratio R=[H2O]/[surfactant]. The particles remain stable for several months. The average diameter of the cholesterol nanoparticles varies between 3.0 and 7.0 nm, while that of retinol varies between 4.0 and 10 nm. The average size of the cholesterol nanoparticles does not change much either as a function of the ratio R or as a function of the concentration of cholesterol. The constant size of the nanoparticles can be explained by the thermodynamic stabilization of a preferential size of the particles. Chloroform is used to carry the active principle into the aqueous cores. Retinol molecules form J-complexes composed of two or three molecules, as detected by UV-visible spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la0534726DOI Listing

Publication Analysis

Top Keywords

organic nanoparticles
8
active principle
8
principle aqueous
8
aqueous cores
8
size nanoparticles
8
cholesterol nanoparticles
8
nanoparticles
7
preparation organic
4
nanoparticles microemulsions
4
microemulsions potential
4

Similar Publications

Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment.

ACS Nano

January 2025

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.

Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.

View Article and Find Full Text PDF

Visual detection of kanamycin with functionalized Au nanoparticles.

Mikrochim Acta

January 2025

Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.

A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the rising importance of assessing the cytotoxicity of gold nanoparticles (GNPs) in biomedical applications.
  • Researchers synthesized three types of GNPs—gold nanorods (GNRs), gold nanobipyramids (GNBPs), and gold nanocups (GNCs)—using a specific method and measured their sizes.
  • The experiments showed that the cytotoxic effects of GNPs varied based on their shape and surface coating, with CTAB-coated GNPs being more harmful than PEG-coated ones, indicating that these factors significantly influence GNP behavior in cells.
View Article and Find Full Text PDF

Metal-organic framework (MOF) nanoparticles have attracted widespread attention as lubrication additives due to their tunable structures and surface effects. However, their solid lubrication properties have been rarely explored. This work introduces the positive role of moisture in solid lubrication in the case of a newly described Ti-based MOF (COK-47) powder.

View Article and Find Full Text PDF

Boehmite nanoparticles and NaY nanozeolite were synthesized by co-precipitation and hydrothermal methods, respectively, and characterized by XRD, FT-IR, TG-DTA, BET, and SEM techniques. XRD and BET analyses demonstrated the formation of boehmite nanoparticles with a surface area of 350 m/g and high crystallinity NaY nanozeolite with a surface area of 957 m/g. In order to evaluate the effect of the content of the mesoporous boehmite nanoparticles on the catalytic performance of the Residue Fluid Catalytic Cracking (RFCC) catalyst, alumina active matrix-based and silica inactive matrix-based catalysts were prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!