Mass spectrometric methods based on stable isotopes have shown great promise for identification and quantitation of complex mixtures. Stable isotope labelling by amino acids in cell culture (SILAC) is a straightforward and accurate procedure for quantitation of proteins from cell lines, that are cultured in media containing the natural amino acid or its isotopically labelled analogue, giving rise to either 'light' or 'heavy' proteins. The two cell populations are pooled and treated as a single sample, which allows the use of various protein purification methods without introducing errors into the quantitative analysis. The quantitation of the proteins is based on the intensities of the light and heavy peptides. The increased number of peptides in a quantitative experiment arising from peptide pairs implies that prefractionation is critical prior to liquid chromatography/mass spectrometric (LC/MS) analysis to minimise signal suppression effects and errors in measurements of the intensity ratios. In this study, the effect of a prefractionation step on identification and quantitation of proteins in a SILAC experiment was evaluated. We show that micro-scale liquid-phase isoelectric focusing in the Micro Rotofor separates proteins into well-defined fractions and reduces the sample complexity. Furthermore, the fractionation enhanced the number of identified proteins and improved their quantitation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.2898DOI Listing

Publication Analysis

Top Keywords

quantitation proteins
16
identification quantitation
12
micro-scale liquid-phase
8
liquid-phase isoelectric
8
isoelectric focusing
8
mass spectrometric
8
proteins silac
8
silac experiment
8
proteins cell
8
proteins
7

Similar Publications

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

Objectives: LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.

View Article and Find Full Text PDF

Ocular inoculation of toad venom: toxic cataract and proteomic profiling.

Front Med (Lausanne)

January 2025

Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Purpose: To report a singular case of cataract caused by toad venom inoculation and to scrutinize the pathological mechanisms through proteomic sequencing of the lens specimen.

Methods: A young Chinese male presented with progressively deteriorating vision in his right eye subsequent to a history of toad venom inoculation. He was diagnosed with a toxic cataract, and underwent phacoemulsification cataract surgery.

View Article and Find Full Text PDF

Introduction: The link between overload brain iron and transcriptional/cellular signatures in Alzheimer's disease (AD) remains inconclusive.

Methods: Iron deposition in 41 cortical and subcortical regions of 30 AD patients and 26 healthy controls (HCs) was measured using quantitative susceptibility mapping (QSM). The expression of 15,633 genes was estimated in the same regions using transcriptomic data from the Allen Human Brain Atlas (AHBA).

View Article and Find Full Text PDF

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Nucleic Acids Res

January 2025

Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.

DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!