Several studies have shown intracellular Zn(2+) release and concomitant cell death after prolonged exposure to exogenous NO. In the present study, we investigated whether cortical neurons briefly exposured to exogenous NO would demonstrate similar levels of intracellular Zn(2+) release and subsequent cell death. Cortical neurons were loaded with the Zn(2+) selective fluorophore FluoZin-3 and treated with various concentrations of the NO generator, spermine NONOate. Fluorescence microscopy was used to detect and quantify intracellular Zn(2+) levels. Concomitant EDTA perfusion was used to eliminate potential effects of extracellular Zn(2+). Neurons were perfused with the heavy metal chelator TPEN to selectively eliminate Zn(2+) induced fluorescence changes. A significant increase of intracellular fluorescence was detected during a 5 min perfusion with spermine NONOate. The increase in intracellular Zn(2+) release appeared to peak at 1 microM spermine NONOate (123.8 +/- 28.5%, increase above control n = 20, P < 0.001). Further increases in spermine NONOate levels as high as 1 mM failed to further increase detectable intracellular Zn(2+) levels. The NO scavenger hemoglobin blocked the effects of spermine NONOate and the inactive analog of the spermine NONOate, spermine, was without effect. No evidence of cell death induced by any of the brief treatments with exogenous NO was observed; only prolonged incubation with much larger amounts of exogenous NO resulted in significant cell death. These data suggest that in vivo release of NO may cause elevations of intracellular Zn(2+) in cortical neurons. The possibility that release of intracellular Zn(2+) in response to NO could play a role in intracellular signaling is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10534-007-9082-y | DOI Listing |
ACS Nano
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.
View Article and Find Full Text PDFJIMD Rep
January 2025
The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences Ben Gurion University Beer-Sheva Israel.
The tightly-regulated spatial and temporal distribution of zinc ion concentrations within cellular compartments is controlled by two groups of Zn transporters: the 14-member ZIP/SLC39 family, facilitating Zn influx into the cytoplasm from the extracellular space or intracellular organelles; and the 10-member ZnT/SLC30 family, mobilizing Zn in the opposite direction. Genetic aberrations in most zinc transporters cause human syndromes. Notably, previous studies demonstrated osteopenia and male-specific cardiac death in mice lacking the ZnT5/ zinc transporter, and suggested association of two homozygous frameshift variants with perinatal mortality in humans, due to hydrops fetalis and hypertrophic cardiomyopathy.
View Article and Find Full Text PDFFront Biophys
June 2024
Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States.
Zn transport across neuronal membranes relies on two classes of transition metal transporters: the ZnT (SLC30) and ZIP (SLC39) families. These proteins function to decrease and increase cytosolic Zn levels, respectively. Dysfunction of ZnT and ZIP transporters can alter intracellular Zn levels resulting in deleterious effects.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, P. R. China.
Chem Soc Rev
January 2025
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!