AI Article Synopsis

Article Abstract

Background: Aldosterone at high concentrations causes an expansion of apical surface area and volume of cultured endothelial cells. These morphological changes are associated with endothelial cell stiffening. Here, we tested the hypothesis that the aforementioned aldosterone actions are confined to aldosterone concentrations within the pathophysiological range. Moreover, we investigated whether endothelial cells of venous and arterial origin respond similarly to aldosterone and whether the new aldosterone antagonist eplerenone effectively prevents endothelial cell growth and stiffening.

Methods: We used an endothelial cell line of venous origin (EAHy 926) and primary cultures of human coronary artery endothelial cells (HCAEC). Cells were incubated for 72 h with aldosterone at concentrations of 0.1, 1, 10 and 100 nmol/l. Eplerenone was added at a concentration of 2 micromol/l. Applying atomic force microscopy, we scanned cell layers under fixed and living conditions, allowing measurement of endothelial cell apical surface, volume and cellular stiffness.

Results: Aldosterone had comparable effects on EAHy 926 and HCAEC. In EAHy 926, the apical surface increased dose dependently by up to 72 +/- 5% and cell volume by up to 36 +/- 5%. In HCAEC, the maximum increase of apical surface was 78 +/- 6% and maximum cell volume expansion was 58 +/- 6%. Furthermore, aldosterone increased endothelial cell stiffness from 1.47 +/- 0.08 kPa up to 3.95 +/- 0.15 kPa in EAHy 926, and from 1.64 +/- 0.13 kPa up to 4.31 +/- 0.13 kPa in HCAEC. Physiological aldosterone concentrations had no effect, but starting at 1 nmol/l, corresponding to the low pathophysiological range, substantial cell alterations emerged. Eplerenone, at a therapeutic concentration, prevented the observed actions of aldosterone.

Conclusions: Aldosterone-induced endothelial cell growth and stiffening in vitro begins with concentrations in the low pathophysiological range. The preventive action of eplerenone indicates that the endothelium could be a major target of this drug in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HJH.0b013e328013f492DOI Listing

Publication Analysis

Top Keywords

endothelial cell
28
apical surface
16
eahy 926
16
cell growth
12
endothelial cells
12
aldosterone concentrations
12
pathophysiological range
12
cell
11
aldosterone
10
endothelial
10

Similar Publications

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!