Purposes: The purposes of this study were to examine dose alterations to gross tumor volume (GTV) and lung using heterogeneity corrections and to predict the magnitude of these changes.
Methods: Three separate conformal plans were generated for 37 patients with lung cancer: plan 1 corrected for heterogeneity, plan 2 did not correct for heterogeneity, and plan 3 used identical beams and monitor units from plan 2 but with heterogeneous calculations. Plans 1 and 2 were normalized to the 95% isodose line. Mean dose (MeanDGTV), maximum dose (MaxDGTV), and minimum dose (MinDGTV) to GTV and V20 were compared between plans 1 and 3. For each patient, the amount of lung in all beam paths of plan 3 was quantified by a density correction factor and correlated with the percent change.
Results: The median percent change in MeanDGTV, MaxDGTV, and MinDGTV between plan 3 and plan 1 was -4.7% (-0.1% to -19.1%, P < 0.0001), -5.59% (0.16% to -31.86%, P < 0.0001), and -4.88% (2.90% to -24.88%, P < 0.0001), respectively. The median V20 difference was -1% (1% to -8%). The density correction factor correlated with larger differences in MeanDGTV on univariate analysis.
Conclusions: Heterogeneity correction lowers the dose to GTV by 5%. This difference can be correlated with the density correction factor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.coc.0000251222.36417.3b | DOI Listing |
J Comput Assist Tomogr
November 2024
From the Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI.
Objective: Computed tomography (CT) measured muscle density is prognostic of health outcomes. However, the use of intravenous contrast obscures prognoses by artificially increasing CT muscle density. We previously established a correction to equalize contrast and noncontrast muscle density measurements.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
The long-term preservation of large volumes of infrequently accessed cold data poses challenges to the storage community. Deoxyribonucleic acid (DNA) is considered a promising solution due to its inherent physical stability and significant storage density. The information density and decoding sequence coverage are two important metrics that influence the efficiency of DNA data storage.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 China; Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China. Electronic address:
Silver (Ag) plays an important role as a cathode catalyst in lithium-oxygen batteries (Li-O batteries). However, the catalytic mechanism of Ag remains unclear. Despite efforts dedicated to studying interfacial reactions, observing efficient reactions and ion transport at the Ag-Li solid-solid interface continues to be a challenge.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil Engineering, Escuela Politécnica Superior, University of Burgos, c/ Villadiego s/n, 09001, Burgos, Spain. Electronic address:
The management of end-of-life wind-turbine blades in the coming years will be necessary, as a clear solution for their recycling is yet to be found due to their complex composition. The suitability of their mechanical recycling is therefore evaluated in this paper, obtaining Raw-Crushed Wind-Turbine Blade (RCWTB) for subsequent incorporation in high amounts of up to 10% vol. in concrete, replacing the aggregates to achieve Fiber-Reinforced Concrete (FRC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!