Three-dimensional ultrasound localization has been performed for external beam prostate treatments at our institution since September 2001. This article presents data from the daily shifts for 221 patients and 5005 fractions, and the results of tests performed to assess the system's performance under clinical conditions. Three tests are presented: (1) To measure the accuracy of the shifts, eight patients treated on a helical tomotherapy machine were localized daily using both ultrasound (US) and a megavoltage computed tomography (MVCT) scan. Comparison of the shifts showed that US localization improved alignment for six of the eight patients when compared to alignment using skin marks alone. The mean US-MVCT vector for these six patients was 3.1+/-1.3 mm, compared to 5.1+/-2.1 mm between the MVCT and the skin marks. The other two patients were identified as poor candidates for US prior to their first treatment fraction. (2) To assess the extent of intrafraction motion, US localization was repeated after treatment for six patients and a total of 29 fractions. The mean intrafraction prostate shift was 1.9+/-1.0 mm, and the shift was within the 3 mm localization uncertainty [Tomé et al., Med. Phys. 29, 1781-1788 (2002); in New Technologies in Radiation Oncology, edited by W. Schlegel, T. Bortfelde, and A. Grosu (Springer, Berlin, 2005)] of the system for 25 of 29 fractions. (3) To assess the interuser variation in shifts, four experienced operators independently localized five patients for five consecutive fractions. The standard deviation of the users' shifts was found to be approximately the same as the system's localization uncertainty. For shifts larger than the system localization uncertainty, the standard deviation of the users' shifts was nearly always much smaller than the mean shift. Taken together with the results of the US-MVCT comparison, this indicates that the shifts improved patient localization despite differences between users.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.2388153 | DOI Listing |
BMC Palliat Care
January 2025
Caring Futures Institute, Flinders University, Sturt Rd, Bedford Park, Adelaide, South Australia, 5042, Australia.
Background: Clinicians are frequently asked 'how long' questions at end-of-life by patients and those important to them, yet predicting timeframes to death remains uncertain, even in the last weeks and days of life. Patients and families wish to know so they can ask questions, plan, make decisions, have time to visit and say their goodbyes, and have holistic care needs met. Consequently, this necessitates a more accurate assessment of empirical data to better inform prognostication and reduce uncertainty around time until death.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Physics, Semnan University, P.O.Box 35195-363, Semnan, Iran.
We derive the compact closed forms of local quantum uncertainty (LQU) and local quantum Fisher information (LQFI) for hybrid qubit-qutrit axially symmetric (AS) states. This allows us to study the quantum correlations in detail and present some essentially novel results for spin-(1/2, 1) systems, the Hamiltonian of which contains ten independent types of physically important parameters. As an application of the derived formulas, we study the behavior of these two quantum correlation measures at thermal equilibrium.
View Article and Find Full Text PDFSci Rep
January 2025
Japan Agency for Marine-Earth Science and Technology, 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 2360001, Japan.
Subsurface seismic velocity structure is essential for earthquake source studies, including hypocenter determination. Conventional hypocenter determination methods ignore the inherent uncertainty in seismic velocity structure models, and the impact of this oversight has not been thoroughly investigated. Here, we address this issue by employing a physics-informed deep learning (PIDL) approach that quantifies uncertainty in two-dimensional seismic velocity structure modeling and its propagation to hypocenter determination by introducing neural network ensembles trained on active seismic survey data, earthquake observation data, and the physical equation of wavefront movement.
View Article and Find Full Text PDFPulsed Dipolar ESR Spectroscopy (PDS) is a uniquely powerful technique to characterize the structural property of intrinsically disordered proteins (IDPs) and polymers and the conformational evolution of IDPs and polymers, e.g. during assembly, by offering the probability distribution of segment end-to-end distances.
View Article and Find Full Text PDFCureus
December 2024
Family Health Unit New Directions, Unidade Local de Saúde do Alto Ave, Vizela, PRT.
Lung cancer is highly prevalent worldwide and is the leading cause of cancer-related death in Portugal. There is increasing evidence that low-dose computed tomography (LDCT) screening reduces mortality; however, few countries have implemented screening strategies. This review aims to gather the best evidence to assess the relevance of implementing lung cancer screening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!