In this paper, we present numerical results obtained from a robust, locally conformal 3-D Orthogonal Grid Finite Difference (OGFD) thermal algorithm introduced in Part I of our current investigation [Al-Rizzo et al., 2006] integrated with an Orthogonal Grid Finite-Difference Time Domain (OGFDTD) scheme [Al-Rizzo et al., 2000], which accurately models the volumetric electromagnetic (EM) power deposition pattern. A unified meshing scheme, which utilizes identical overlapping grids in Cartesian and cylindrical coordinates, is employed within the load zone in the OGFDTD and OGFD models. Local temperature profiles excited by the absorbed microwave energy were measured at seven locations within the sample as a function of heating time. In order to benchmark, or validate our model, an alternative analysis of the coupled EM and thermal simulations was performed using state-of-the-art, Finite Element Method-based Ansoft's High Frequency Structure Simulator (HFSS) and the coupled thermal/stress analysis tool ePHYSICS (http://www.ansoft.com). Additionally, we compare our numerical simulations against measured dynamic temperature profiles induced within a mineral ore sample maintained for exposure period of 28.5 minutes inside a cylindrical multimode heating furnace energized at 915 MHz with a microwave source power of 12.5 kW and accompanied with significant temperature elevation. A combination of convective and radiation thermal boundary conditions are considered at the interfaces between the cavity walls, air, and sample. There is a general agreement between simulated and measured spatial and temporal temperature profiles, which validates the proposed model. Results indicate that inevitable fluctuations in the frequency spectrum and output power of the magnetron, non-uniformity of sample packing, and heat released by uncontrolled exothermic chemical reactions have a significant effect on the comparisons between measured and computed temperature patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08327823.2005.11688526DOI Listing

Publication Analysis

Top Keywords

temperature profiles
12
finite difference
8
locally conformal
8
overlapping grids
8
orthogonal grid
8
temperature
5
thermal
4
difference thermal
4
thermal model
4
model cylindrical
4

Similar Publications

Using Microalgae as a Good Motivator of Ossimi Lamb's Health and Growth.

J Anim Physiol Anim Nutr (Berl)

January 2025

Botany Department, Faculty of Science, Fayoum University, Fayoum, Egypt.

In tropical and subtropical countries like Egypt, sheep breeding faces environmental thermal stress, especially during the summer when air temperature and humidity are very high. Using Microalgae as an alternative feedstuff can significantly improve sheep growth, health and oxidative status. Therefore, this study aimed to evaluate the effect of consuming two different species of microalgae: Spirulina platensis (SP) and Chlorella vulgaris (C.

View Article and Find Full Text PDF

Optimisation of the crystallisation process through staggered cooling in a nonvibrating granular system.

Sci Rep

January 2025

Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, 42184, Mineral de la Reforma, Hidalgo, México.

Article Synopsis
  • The study investigates how to optimize the crystallization process of magnetic particles using a 2D system under an oscillating magnetic field.
  • By adjusting the magnetic field's magnitude, researchers control the effective temperature, allowing the system to transition from fluid-like behavior to a crystalline state as the temperature decreases.
  • Switching from linear cooling to a staggered cooling approach significantly reduces the time taken for particles to reach their lowest energy state, thus optimizing the crystallization time.
View Article and Find Full Text PDF

Lead-free halide double perovskites (DPs) have become a research hotspot in the field of photoelectrons due to their unique optical properties and flexible compositional tuning. However, the luminescence of DPs exhibits thermal quenching at high temperatures, which severely affects their further application. Herein, we synthesized the rare earth Dy and transition metal Mn codoped CsNaYCl rare earth DPs and characterized the optical properties using temperature-dependent photoluminescence spectra and time-resolved photoluminescence decay profiles at different temperatures.

View Article and Find Full Text PDF

Introduction: Patients recovering from severe acute exacerbations of chronic obstructive pulmonary disease (AECOPD) have a 30-day readmission rate of 20%. This study evaluated the feasibility of conducting a randomised controlled trial to evaluate clinical, patient-reported and physiological effects of home high-flow therapy (HFT) in addition to usual medical therapy, in eucapnic patients recovering from AECOPD to support the design of a phase 3 trial.

Methods: A mixed-methods feasibility randomised controlled trial (quantitative primacy, concurrently embedded qualitative evaluation) (ISRCTN15949009) recruiting consecutive non-obese patients hospitalised with AECOPD not requiring acute non-invasive ventilation.

View Article and Find Full Text PDF

Interaction of a novel dihydroxy dibenzoazacrown (HDTC) with various surfactants of different charges, for example, anionic (sodium dodecylsulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), cationic gemini (butanediyl-1,4-bis(dimethylcetylammonium bromide), 16-4-16), ionic liquid (1-hexadecyl-3-methylimidazolium chloride, CMImCl), and nonionic (polyoxyethylene sorbitan monostearate, Tween-60), has been investigated at a widespread range of surfactant concentrations (including premicellar, micellar, and postmicellar regime) in 15% (v/v) EtOH medium at room temperature. Several experimental techniques, viz., tensiometry, UV-vis spectroscopy, and steady-state fluorimetry, are implemented to explicate these interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!