Hydrogen production was accomplished under visible-light irradiation by using a system consisting of a biomolecule (chlorophyll a), methylviologen, ethylenediaminetetraacetic acid disodium salt and Pt-loaded poly(l-glutamate) (Poly(Glu)), in aqueous decylammonium chloride (DeAC) solution. Spectroscopic studies revealed that chlorophyll a is solubilized in the hydrophobic clusters of Pt-loaded Poly(Glu)-decylammonium chloride. In the Poly(Glu)-DeAC complex, the electron transfer occurred between chlorophyll a and methylviologen leading to hydrogen production. The most noticeable result is that the rate of hydrogen evolution depends on the change from the random coil to the alpha-helix in conformation of Poly(Glu) induced by the cooperative binding with DeAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b615367d | DOI Listing |
Nanomicro Lett
January 2025
State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
Seawater electrolysis offers a promising pathway to generate green hydrogen, which is crucial for the net-zero emission targets. Indirect seawater electrolysis is severely limited by high energy demands and system complexity, while the direct seawater electrolysis bypasses pre-treatment, offering a simpler and more cost-effective solution. However, the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis's efficiency.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Chemistry, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia.
Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States.
Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Computational Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
Particulate methane monooxygenase (pMMO) is the most efficient of the two groups of enzymes that can hydroxylate methane. The enzyme is membrane bound and therefore hard to study experimentally. For that reason, there is still no consensus regarding the location and nature of the active site.
View Article and Find Full Text PDFChem Asian J
January 2025
Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462066, India.
Growing atmospheric CO concentrations are a global concern and a primary factor contributing to global warming. Development of integrated CO capture and conversion protocols is necessary to mitigate this alarming challenge. Though CO hydrogenation to produce formic acid and methanol has seen many strides in the past decades, most studies utilize pure CO for this transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!